Page 40 - 34-1
P. 40
Valuation of Spread and Basket Options
References
Alexander, C., III, and Scourse, A. 2004. Bivariate normal mixture spread
option valuation. Quantitative Finance, 4 (6): 637-648. https://doi.
org/10.1080/14697680400016174
Augustin, P., Sokolovski, V., Subrahmanyam, M. G., and Tomio, D. 2022. In sickness and
in debt: The COVID-19 impact on sovereign credit risk. Journal of Financial
Economics, 143 (3): 1251-1274. https://doi.org/10.1016/j.jfineco.2021.05.009
Bae, K., Kang, J., and Kim, H. S. 2011. Pricing basket and Asian options under the jump‐
diffusion process. The Journal of Futures Markets, 31 (9): 830-854. https://doi.
org/10.1002/fut.20508
Bayer, C., Siebenmorgen, M., and Tempone, R. 2018. Smoothing the payoff for efficient
computation of basket option prices. Quantitative Finance, 18 (3): 491-505.
https://doi.org/10.1080/14697688.2017.1308003
Bernard, C., Le Courtois, O., and Quittard-Pinon, F. 2008. Pricing derivatives with barriers
in a stochastic interest rate environment. Journal of Economic Dynamics and
Control, 32 (9): 2903-2938. https://doi.org/10.1016/j.jedc.2007.11.004
Black, F., and Scholes, M. 1973. The pricing of options and corporate liabilities. Journal
of Political Economy, 81 (3): 637-654. https://doi.org/10.1086/260062
Borovkova, S., Permana, F. J., and van der Weide, H. 2007. A closed form approach to the
valuation and hedging of basket and spread options. The Journal of Derivatives,
14 (4): 8-24. https://doi.org/10.3905/jod.2007.686420
________ . 2012. American basket and spread option pricing by a simple binomial
tree. The Journal of Derivatives, 19 (4): 29-38. https://doi.org/10.3905/
jod.2012.19.4.029
Caldana, R., Fusai, G., Gnoatto, A., and Grasselli, M. 2016. General closed-form basket
option pricing bounds. Quantitative Finance, 16 (4): 535-554. https://doi.org/10
.1080/14697688.2015.1073854
Carmona, R., and Durrleman, V. 2003. Pricing and hedging spread options. Siam Review,
45 (4): 627-685. https://doi.org/10.1137/S0036144503424798
________ . 2005. Generalizing the Black-Scholes formula to multivariate contingent
claims. Journal of Computational Finance, 9 (2): 43-67. https://doi.
org/10.21314/JCF.2005.159
Chang, C. C., and Tsao, C. Y. 2011. Efficient and accurate quadratic approximation
32