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Abstract

LIBOR market model (LMM) is a complicated interest rate model and it is hard to be
evaluated both analytically and numerically. Because of the non-Markov property of the
LMM, a naively implemented tree model will not recombine. Thus the size of this naive tree
model will grow explosively and the tree cannot be efficiently evaluated by computers. This
paper proposes a recombining LMM tree model by taking advantages of tree construction
methodology proposed by Ho, Stapleton, and Subrahmanyam (HSS). We first rewrite the
discrete mathematical model for LMM suggested by Poon and Stapleton (2005). Then we
derive the conditional means and the variances of the discrete forward rates which are
important for the tree construction. Finally, our recombining trees for pricing interest rate
derivatives are built by taking advantages of the tree construction methodology proposed by
HSS. Numerical results illustrated in Section 5 suggest that our method can produce
convergent and accurate pricing results for interest rate derivatives.
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1. Introduction

Many traditional interest rate models are based on instantaneous short rates and
instantaneous forward rates. However, these rates can not be observed from the real world
markets; consequently, it is hard to calibrate these models to fit the real world markets.
LIBOR market model (LMM) is recently widely accepted in practice because it is based on
the forward LIBOR rate which can be observed from the real world markets. This model
was first proposed by Brace, Gatarek, and Musiela (1997) (abbreviate as BGM). In their
model, the forward LIBOR rate is assumed to follow a lognormal distribution process,
which makes the theoretical pricing formula for the caplet consists with the pricing formula
under the Black's model (Black, 1976).

However, when implementing the LMM by a tree method, the tree will not recombine
due to the non-Markov property of LMM. This non-recombining property makes the size of
the tree grows explosively and thus the tree method is inefficient and difficult to price'. To
address this problem, this paper adapts the HSS methodology proposed by Ho, Stapleton,
and Subrahmanyam (1995) to construct a recombining binomial tree for LMM. By applying
the HSS methodology into the LM M, the tree valuation method becomes feasible in pricing
the interest rate derivatives.

The tree method proposed in this paper makes us have not to rely on the Monte Carlo
simulation because our tree-based method is more accurate and efficient. Besides, the tree
method can deal with American-style features, such as early exercise or early redemption,
which is an intractable problem in Monte Carlo simulation.

The paper is structured as follows. Section 2 reviews important interest rate models.
Section 3 introduces the market conventions about LMM and derives the drift of discrete-
time version of LMM which follows the development in Poon and Stapleton (2005). In
section 4, we introduce the HSS recombining node methodology (Ho et a., 1995) into the
discrete-time version of LMM which derived in section 3 and construct the pricing model.
The numerical pricing results and the sensitive analyses in section 5 verify the correctness
and robustness of our tree model. Finally, section 6 concludes the paper.

2. Review of Interest Rate Models
In this section we introduce some important interest rate models that can be generally

1 Similarly, HIM model also has the non-Markov property and thus the tree for HIM grows explosively
as mentioned in Hull (2006).
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categorized into two categories: equilibrium models and no-arbitrage models. Equilibrium
models usually start with assumptions about economic variables and derive a stochastic
process for the short rate r. On the other hand, a no-arbitrage model makes the behaviors of
interest rate exactly consist with the initial term structure of interest rates. We will introduce
some important equilibrium models first.

Vasicek model, suggested in Vasicek (1977), assumes that the short rate process r (t)
follows the Ornstein-Uhlenbeck process and has the following expression under the risk-
neutral measure:

dr(t) = o~ r(D))di + odW (1)

where mean reversion rate « , average interest level 3, and voladtlity o are constants.
Note that the short rate r (t) appears to be pulled back to long-run average interest level 3,
which is called mean reversion property. Vasicek (1977) shows that the price at timet of a
zero-coupon bond that pays $1 at time T can be expressed as

P(t,T)= A(t,T)e """

where | T
B(t,T)=—~

B.T)-T+i)(a’f-0°12) o’B(,T)

o’ 4o

A(t,T)=exp[ ]

The drawback of Vasicek model is that the short rate could be negative. To improve this
drawback, Cox, Ingersoll, and Ross (1985) propose CIR model which makes the short rate r
(t) always non-negative. Under the risk neutral measure, r (t) follows the following process:

dr(t) = (- r(t))dt + o [r()dW (1)

which aso has the mean reversion property. Moreover, to make the short rate nonnegative,
CIR model use a non-constant volatility o+/7(¢) to replace the constant volatility in Vasicek
model. The zero-coupon bond price P (t,T) in CIR model can be expressed as follows:

P(t,T) = A(t,T)e 20T

where
2(e”" -1)
(y+a) e =1)+2y

B4, T)=
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(a+yNT—-1)/2

2ye
(y+a) e =) +2y

]20(,6/0'2

A, T)=[

b

and Y=o’ +20° .

Note that equilibrium models cannot exactly fit prevailing term structure of interest rates.
Thus, no-arbitrage models are designed to calibrate prevailing term structure of interest
rates. We first focus on instantaneous short rate models.

Ho and Lee (1986) propose the first no-arbitrage model. The short rate process of Ho-
Lee model under the risk-neutral measure is as follows:

dr(t)=6(t)dt+odW (¢)

where & (t) is a function of time chosen to ensure that the model fits the initial term
structure, and it can be expressed by the instantaneous forward rate as follows:

o) = £.(0,0)+o’t

where f, (0, t) is the instantaneous forward rate for maturity t as seen at time zero and the
subscript t denotes a partial derivative with respect to t. Moreover, the price of the zero-
coupon bond P (t,T) in Ho-Lee model can be expressed as

_ —r(()(T—t)
here P(t,T)= A(t,T)e

L POT) IR
lnA(t,T)—ln—P(O’t)+(T 0/0.0)= 0T 1)

Hull and White (1990) then provide a generalized version of the Vasicek model and it
provides an exact fit to the prevailing term structure. The short rate process of the Hull-
White model is

dr(t) =[0() — ar(0)]dt + odW (¢)

where a and o are constants and the function of & (t) can be calculated from the initial term
structure as follows:

a(t)= f,(O,t)+af(0,t)+0—2(1—e’2””)
20

The zero-coupon bond price P (t,T) in Hull-White model has the same general form as in
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Vasicek model:
P(t,T) = A(t,T)e 2¢Dr®
where
_ e
BTy =122
P(O,T) 1 2, —oT —aiN2 ¢ 2ot
In A t,T =ln——=+ R t,T 0)[ 3 (e . ) y
(1) =Inp o+ BTS00 = 0% ooy

On the other hand, Heath, Jarrow, and Morton (1992) model the stochastic process of
the instantaneous forward rate to describe the evolution of the entire yield curve in
continuous time. The instantaneous forward rate f (t,T) for the fixed maturity T under the
risk-neutral measure is described as follows:

df ¢, TYy=o(t,T)dt+o(t, T)dW (1)
where
W(t)=W,\¢),---,W,(t)) isad-dimensional Brownian motion,
o(t,T)y=(o,tT),-,0,(t,T)) isavector of adapted processes,

a(t,T) =0, T) f o(1,5)ds = Zd:o; ,T) f G (t,5)ds .

Given the dynamics of the instantaneous forward rate f (t,T), the Ito's lemma can be applied
to obtain the dynamics of the zero-coupon bond price P (t,T):

dP(t,T) = P(t,T)[r()dt —( f o(t,s))dw (1]

wherer (t) can be expressed as follows:

rO) = F(t,0) = £(0,0)+ jo’a(u,r) j o(u, s)dsdu+ jo’a(s,z)dW(s)

Note that the short rate process r (t) in the HIM model is non-Markov and makes a naively-
implemented tree for simulating the short rate process a non-recombined tree. Besides,
another drawback of the HIM model isthat it is expressed in terms of instantaneous forward
rates, which can not be directly observed in the market. Thus, it is difficult to calibrate the
HJIM model to price the actively traded instruments.

To address the aforementioned problem, Brace et al. (1997) suggest the BGM model
that models the dynamics of the forward rates. However, Miltersen, Sandmann, and
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Sondermann (1997) discover this model independently, and Jamshidian (1997) also
contributes significantly to its initial development. To reflect the contribution of multiple
authors, many practitioners, including Rebonato (2002), renamed this model to LIBOR
market model (LMM).

There are two common versions of the LMM, one is the lognormal forward LIBOR
model (LFM) for pricing caps and the other is the lognormal swap model (LSM) for pricing
swaptions. The LFM assumes that the discrete forward LIBOR rate follows a lognormal
distribution under its own numeraire, while the LSM assumes that the discrete forward swap
rate follows alognormal distribution under the swap numeraire. The two assumptions do not
match theoretically, but lead to small discrepancies in calibrations using realistic
parameterizations. The following derivations are based on the LFM.

Unlike HIM that modelsf (t,T), the instantaneous forward rate at time T as seen at time
t, the LFM modelsf (t;T,,T,,,), the discrete forward rate seen at timet for the period between
time T, and time T;,,. f (t;T,,T,.,) follows a zero-drift stochastic process under its own
forward measure:

GELL) _ 6 aw )

J&T,T,)

where dW, (t) is a Brownian motion under the forward measure Q'i+1 defined with respect to

>

the numeraire asset P (t,T;.;) , and o, (t) measures the volatility of the forward rate process.
Using Ito's lemma, the stochastic process of the logarithm of the forward rate is given as
follows:

~0. (1)

i

din f(;T,T,,) = di+0o,(0)dW (1) @

The stochastic integral of equation (1) can be given asfollows. Foral 0 <t <T,,

2
0 AT, T =t fO T, T - [~2 Ot [ w @

Since the volatility function g; (t) is deterministic, the logarithm of the forward rate is
normally distributed, implying that the forward rate is lognormally distributed. For t = T, ,
equation (2) implies that the future LIBOR rate L (T;,T;.,) =f (T;;T;,T;,,) isaso lognormally
distributed. This explains why this model is called the lognormal forward LIBOR model.
Thought each forward rate is lognormally distributed under its own forward measure, it is
not lognormally distributed under other forward measure.
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3. Market Conventions of the LMM and the Discrete-Time Version of the LMM

In this section, we first introduce some market conventions of LMM and related
interest rate instruments such as caplets and forward rate agreements (FRAS). Next, we
restate some key results in the Poon and Stapleton (2005) and then re-derive generalized
formulas for discrete-time version of the LMM that can be directly used in our tree
construction procedure.

3.1 Market Conventions of theLMM
The relationship between the discrete LIBOR rate L (T; ,T,,,) for the term &, =T,,; —T, and
the zero-coupon bond price P (T;,T,,,) isgiven asfollows:
1
1+SL(T,T,,)

wheret <T, <T,<T,<---<T,isthetimelineand &; is called the tenor or accrual fraction

P(T,T,)= ©)

for the period T; to T;, 1.
Thetimet discrete forward rate for theterm &, =T,.,—T, isrelated to the price ratio of
two zero-coupon bonds maturing at times T, and T, ; asfollows:
P,T
148 /(5T T, =) @
P(ta 7;+1)
The forward rate convergesto the future LIBOR rate at time T, , or:

lim /(5;T,,T,) = LT, T,,) -

We can rewrite equation (4) asfollows:
1
ST )P@T,) = E[P(t’ I)-P(,T,)].

Then, we define basic terms that are frequently used in the market as follows:
For (t, T,,T,) : theforward price at timet to invest a zero coupon bond matured at time T, at
time T, and can be expressed asP (t, T,) / P (t, T,) .
y (t, Ty : theannual yield rate at timet to T, time and its relation with the zero coupon bond
isgivensasP (t, T,) =1/ (1+ 6,y (t, TY)).
f(t, T, Ty : theforward rate at timet for the time period T, to T,,,; and its relation with
forward price of azero coupon bond isgiven asFor (t;T,,T,.1) =1/ (1+ 6, f
(6T Then))-
After introducing these basic terms, we introduce a popular interest rate option- an
interest rate cap. A cap is composed of a series of caplets. For a T,-maturity caplet, the
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practitioners widely use the Black's formulato obtain its value at timet as follows:

caplet,(t) = Ax6,xP(t, T, )L f(t;T,, T, )N(d,)— KN(d,)],

(6)
where
g I @T,T,) K) + 03T~ 1)/ 2
1 o,\T,—t ’
g I/ @T.T,)/ K) -0 (T, ~1)/2
L=

o;ﬂ}—t ’

A : the notional value of the caplet,

6 : the length of the interest rate reset interval as a proportion of ayear,

P (t, Ti.1) : the zero coupon bond price paying 1 unit at maturity date T, ; ,

K : the caplet strike price,

o, : the Black implied volatility of the caplet,

N (.) : the cumulative probability distribution function for a standardized normal

distribution.

Furthermore, under the LIBOR basis, we can derive the same theoretical pricing
equation for the caplet as equation (6) from the LFM model. Because both of LFM and
Black's model (Black, 1976) are assuming that the forward rate follows the lognormal
distribution and we get the consistent results.

Another instrument we illustrate here as a key to derive out the discrete-time version of
the LMM is the forward rate agreement (FRA). A FRA is an agreement made at time t to
exchange fixed-rate interest payments at a rate K for variable rate payments, on a notiona

amount A, for the loan period T, to T,.; equal to one year. The settlement amount at time T,
onalong FRA is

AT, T, )~ K)
PR ==y @

wherey (T,,T,.1) isthe annual yield at time T, to T,,, . At the time of the contract
inception, a FRA is normally structured so that it has zero value. To avoid the arbitrage, the
strike rate K is set equal to the market forward rate f (t; T,,T,.1) . We denote the value of the
FRA at timet as FRA (t, T,,) which can be expressed as
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3.2 TheDiscrete-Time Version of theLMM

We first restate the most important results which are under the "risk-neutral" measure
in the Poon and Stapleton (2005).
(A) For a zero-coupon bond price is given by

P@,T,)=PtT)E (P(T,T)), 9)
or we can write

P.T,)

E(P(T,T,) = PUT)

= For(1,T,T,)

(B) The drift of the forward bond priceis given by

E,[FOI/'(Y;,T;,TH)]—FOV(I,]:,T;,)

P,T,
:_P((t,Tn ! cos [For(T, 1. PTLT)1 (10)

(C) The drift of T, -period forward rate is obtained from the equation (8) and given by

Ef 1T, T )-/&T,.T,)=
1 1 1
X X oo X
I+ y(T,T,) 1+ f(T:T,,T5) 1+ f(T;:T,.T,,))
x(+f&1,1))- 0+ (61, 1)) - A+ f(5T,.T,,,))

_COVt[f(Tl;T;mT;H)) ] (ll)

Now we re-derive the generalized version for above formulas so that the results can be
directly used in our tree construction. We first apply the results to the LIBOR basis for the
FRA and rewrite the equation (7) asfollows

FRAT ) = AV T3 T T.) = K)-9, (12)
VT 6/

where 6, = T,,,1 —T,. We further assume all the tenors arethesame (i.e. 6, = §,=..= §, =

6) and the notional amount A equal to one to make the equation briefer. By using the above
results and similar steps, we derive out the FRA value at time t of the equation (12) to
generalize the T,,-maturity forward rate
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ELfTiT, T~ f(5T,.T,.) =

-1 1 1

_— ST, T, )y 13
5 eI T e T Ty e T T ) &)

x(U+6f (T, A+ f (LT, 1)) - I+ 6/ (1T, T,,,))

We assume that the forward rate f (Ty; T,,T..1) isthelognormal for al forward maturities,
T, . Then, we use the approximate result for the covariance term, that is for the small change
around the value X = a, Y = b, we have cov (X, Y) = ab cov (In X, In Y). Here we take a =

1

f(t;T,,T,) and b =1/(1+ f (t;T,,T,)) toevaluate cov, (f(Ty; T1,To), — — thenwe
1+ (Ty; Ty, T)
have
1
cov (f(T;T,T,),———)=
VOB
1 1
T, T, (—————)cov,(ny(7,,T,),In ——
ST 2)(1+f(t;Tl,T2)) (In W(7,,T;) 1+y(Tl,T2))

Substitute it into the equation (13) and use the property of logarithms to express the drift of
T, -maturity forward rate as the sum of a series of covariance terms. Finally, to make our
covariance terms in a recognizable form, we use the extension of Stein's lemma to evaluate

1
theterm with aformcov, (In f(T;; T,,, Tw), IN(—M8MMm .
N T T T I (s )

Stein's Lemma for lognormal variables
For joint-normal variables x and y, we have

cov(x,g(v)) = E(g'(»)) - cov(x, y)

Hence, if x=In Xandy =In'Y, then

1 -Y
cov(ln X,In =FK -cov(ln X,InY
( 1+Y) (1+Y) ( )_

Thus we have
1

cov,(In /(T;T,,T,,),n(—————)) =
l( f( 1°>"n 1) (l+f(]—1,71’7’2)))

/(T T,)
E(—L0tn) In £(T;T,,T.,).In f(T:T.T
.y v e L) ST 1)
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Here, we apply the aforementioned result to the equation (13) and derive out the drift of the
forward LIBOR rate as the sum of a series of covariance terms as follows:

ELTT T, 01- S GTLT )=

of;T.T,)
HT T IX—2222022) ooy [In f(T;T,,T.,),In £(T:T.T
f( n n+l)x1+5f(t;7.{’]72) COV[nf( 1*>*n*"n 1) nf( 1 1 2)] (14)
+...
ofT,.T,..)

+ ST, T)X

-cov,[In f(7;T,,T,,),In f(1,;7,,T,
1+5f(t;7-;”7:1+1) 1‘[ f( 1 n nl) f( 1 l)]

We also assume that the covariance structure is inter-temporally stable and is a function of
the forward maturities and cov, [Inf (Ty;T; ,Ti1), Inf (T4;T,,, Thea)] iS NOt dependent on t. Then
we define

cov [In f(T;T.,T,).In f(T,:T,.T,,)]=6,, i=1,2,-,n

where Ei,n is the covariance of the log i-period forward LIBOR and the log n-period forward
LIBOR. Finally, we can rewrite equation (14) asfollows:

ELf(:T, T.))-f(6T,.T,.) _ S/ (h.T) o . /D) o
f&T,.T,.) 1+6/T,T,) " 1+8f(:T,,T,) "

S/ T, ) s
1+6f(:T,.T,,) ™"

(15

4. Infroducing the HSS Recombining Node Methodology and Applying
It to Construct a Recombining LMM Tree

Ho et al. (1995) suggest a general methodology for creating a recombining multi-
variate binomial tree to approximate a multi-variate lognormal process. Our assumption
about the LMM satisfies the required conditions of the HSS methodology. Therefore, we
apply the HSS methodology to construct the recombining trees for LMM. We first introduce
the HSS methodology and then apply it to construct a recombining LMM tree.

4.1 The HSS M ethodology
The HSS method assumes the price of underlying asset X follows a lognormal diffusion
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process:

din X(t) = (X (&), t)dt + o(t)dW (¢), (16)

where ¢ and o arethe instantaneous drift and volatility of In X, respectively, and dw
(t) is a standard Brownian motion. They denote the unconditional mean at time O of the
logarithmic asset return at time t; as 4 . The conditional volatility over the period t,_; to t; is
denoted ¢;_,; and the unconditional volatility is oy; .

To approximate the underlying asset process in equation (16) with a binomial process
at timet;,i =1,---, m, given the means ¢ , conditional volatilities o ;; , and the unconditional
volatilities oy; , the HSS method requires that the conditional volatilities of the binomial
process (}i-l,i (n) , where n; denotes the number of binomial stages between timet;_; and time
t;, convergesto the conditional volétility In X of asfollows:

lim 6-i—1 i(ni) = O-i—l i Vi. (17)
1y —yo0 ’ ’

Similarly, the unconditional volatility &q; (N, Ny,-++,n) and the mean 4 of the binomial
process converge to the unconditional volatility and the mean of In X as follows:

lim &,,(n,n,--,n)=0,,, Vi. (18)

Fy . H =00

lim g, = 4, (19)

1y —>00

The HSS method involves the construction of m separate binomial distributions for the
prices of the underlying asset at timet,,---, t;,--+, {,,, ahd has the set of a discrete randomness
for X, where X; isonly defined at timet; . In general they have the form of X, at noder:

X, =X M d (20)

where N, = ijl n, . The upward and the downward movements u;, d; and the branching
probabilities are properly selected to satisfy the equations (17), (18) and (19). They denote

x,=In(X,/X,)

and the probability to reach x; given anodex,, at t;; as

g(x, |x = xH,r) or q('xi)
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An example, where m= 2 and we have X,, X; and X, isillustrated in Figure 1.
Lemma 1 Suppose that the up and down movements u; and d; are chosen so that

AEX )/ X,)" _
d = )20 , i=12,m, 21
© l+exp(20; (-t )/ ) D
1
u,=2EX)/ X)) —d, i=12-,m, (22)

where N, = Z;:I n, ,thenif , for al i, the conditional probability q (x) —~0.5 asn — oo, for
| =1,---,i, then the unconditional mean and the conditional volatility of the approximated

process approach respectively their true values:

LB Ex)

li limé . —>o._ .
) i-1,i i—1,i
e X X e
_ : 0 0
1=1,---,i
Time 0 ty ty
Xo X4 X,
n,+n,
P o Uz
-
n, & "
Xo Uy ,
- =:‘-. ™ - N+, 1
e neron Ko Uz d;
& ' Xo Uy 1
Xo % 4
) b n1 '] =-
XU d1 _.-" "-. L]
. " .
e L]
= - n,+n,
X, d,

Figure 1 A discrete process for X;, X,

There are n,+1 nodes at t, numbered r= 0, 1,..., n,. There are n,+ n,+1 nodes at f, numbered r=0, 1,...,
n,+ n,. X, is the starting price, X, is the price at time ¢,, and X, is the price at time t,. u,, d,, u, and d, are
the proportionate upward and downward movements.
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Since x, =In (X, / Xp) is normally distributed, it follows that the regression formula

X, =a+ bixi_l +&, E,'_l(gi) =0
islinear with
bi = \/[tio-g,i - (li _Zi—l)o-iz—l,i]/ti—lo-g’i_l >
- 0= E(x)~bE(x.,)

They determined the conditional probabilities q (X;) so that

E_(x)=a+bx

i—Lr

held for the approximated variables x; and x;.; .

Theorem 1 Suppose that the X; are joint lognormally distributed. If the X; are approximated
with binomial distributions with N; = N;,; + n; stages and u; and d; given by equations (21)
and (22), and if the conditional probability of an upward movement at noder at timei —1is

a+bx_,,—(N_ —r)lnu,—rind, Ind,

- , Vi, r (23
n(nu, —Ind,) Inu, —Ind,

q(x; [ x,_, = xH,r) =

then 4, — 4 and 6, >0, and 6, , >0, as n, —>eo, Vi

4.2 Applying the HSS M ethodology to the LMM
After introducing the HSS methodology, we now apply this methodology to construct
recombining trees for LMM and make some change to satisfy our conventions. We have the
following propositions.
Proposition 1 For the forward LIBOR rate which follows the lognormal distribution, we can
choose the proper upward and downward movements to determine the i-th period of the T, -
maturity forward LIBOR rate and have the form
SGT,T,), = f(o;]:q’nﬂ)ui/vi_rdir’ i=1.1,,-.T

n

(24)

where
1

g 2 AEGGT T,/ f(0 T, T (25)

1+ eXp(zo'HJ vV (]: -1, )/ h; )
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u, = 2AE(f BT, T, )/ f(OT,T,.)]-d, (26)

N, =N_ +n (27)

r: node's number from top to bottom at time T;

The structure of the binomial tree can be shown as Figure 2, with n; +1 nodes at T,
numbered asr = 0,1,...,n; . There are n, +n, +1 nodes at T, numbered asr = 0,1,...,n; + n,.
Here we write the forward rate f (0; 2,3) in abbreviated form f (0; 2) and taken; =n, =2, r;
=r,=2.

n1+n2
@®02)u,
o
f(0:2)u,"
2)u
[ '@
o [
ntn,—r, o,
f(0;2) @ o nor r.f(O;z)Uz d,
f(0;2)u, ' dy
o o
n
®:02d @
o
n,+n.
@®02)d,

Figure 2 The binomial tree for the forward rate f (0;2,3)

After determining the structure of the forward LIBOR tree, we then have to choose the
probability to satisfy the Proposition 1.
Proposition 2 Suppose that the forward LIBOR rate f (i;T,,T,.1) is joint lognormally
distributed. If the forward rate f (i;T,, Tpe1) , 1 = Ty, Ty, -+, T, @re approximated with binomial
distributions with N; = Ni_; + n; stages and u; and d, are given by equations (25) and (26), then
the conditional probability of an upward movement at noder at timeT; is
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E_(x)=(N_-r)lny—rind,  Ind,

X|x_ =x_,)= Vi, r,
90 1% = %,) n(Inu, —Ind,) Inu,—Ind, (28)
where
x =In JGTLT,.) 29)
JO:T,.T,.,)
E_(x)=a+ bi‘xi—l,r =E(x;,)—bE(x_)+ bixi—l,r . (30)

To determine the conditional probability, we must derive E; _;(X) first. We first derive
E (%) term in equation (30). Since the forward rate f (i;T,,, T,.1) iS lognormally distributed,
we have
E(fG;T,T 1
E(.xl-) — ln[ (f(l n n+1))] __O.gl (31)
fO.7.T.,) 2

Second, we use the result of equation (15) obtained from the last section, and rewrite it as

follows:
EUf T, Ty, 6/@L.T) o . &f6T.T)
f(T,.T,) 1+6,f(t:T,T,) " 146,fT,.T,)

ST T, o
146, /(5T T,.) "

(32)

Then multiple the f (t;T,, Tneq) / f (0;T,, T,1) term on both side to get the general form of E;
(f (Tl;Tann+l)) /f (O;Tn-Tn+1) :

f(t;]::’]—;wl) XEr[f(Tlv;T;,’T;:H)]
SOL.T.,)  f&I.T,)
SOLTY o, SJGLL) o SIGTL) o | OfETL) s
fOT,T.) 48T, L) " 1+8/GT,T) ¢ 1+8, (6T, T,y "
(33)

Finally, we substitute it into the formula (31) to obtain E (x) term. Then, we take the value
of E () into equation (30) to compute the upward movement probability at time T; given the
node f (i —1; T, Tre): -

Note that when n, stages approach the infinite for | = 1,---,i, the sum of n, stages also

approach the infinite (i.e.N; :Zj_l n, —<°) . The upward and downward movements and the
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conditional probability can be reduced to a briefer form which is easier to calculate. That is,

2
d = ,
" l+expQo,, (T-T )/ n)

u,=2-d,
and the conditional probability q(x) — 0.5asn,—co, for | =1,---i .

5. Pricing Interest Rate Derivatives with LMM Recombining Trees
After constructing our recombining tree model for LMM by following the procedures
mentioned in the last section, now we will use our tree model to price bond options and
caplets and compare the pricing results with the Monte Carlo simulations. Some sensitive
analyses are given in this section to verify the correctness and robustness of our model.

5.1 The Valuation of Bond Options on Zero Coupon Bondsin LMM

The bond option on a zero coupon bond (ZCB) is abond that can be callable before maturity
date with a callable price K. For example, we have a three years maturity zero coupon bond
with a callable value K equal to 0.952381 dollar at year two. That is to say we can redeem
the ZCB at year two with 0.952381 dollar or hold it until maturity at year three with 1 dollar.
Therefore, we have to price the option value C, of this callable bond at time O (see the
Figure 3).

Co option maturity bond maturity
| | - J
Time 0 1y 2y e 3y
one year

Figure 3 The callable bond for the 3-year maturity ZCB

To obtain the callable bond option value, we use the tree method to price the option
value of the callable bond. The payoff function of the option is max (P(2,3)-K,0), where P
(2,3) denotes the price of ZCB (that matures at year three) at year two. Then we discount the
payoff function back to time O to get the option value of the callable bond. By assuming that
the flat forward rate 5% and constant volatility 10%, the analytical valueis

C,=P(0,2) xE[max (P (2, 3)—K, 0)]

= 0.90702948 < 0.00258128
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=0.00234130,
which is close to 0.002342263685, the value generated by our recombining tree model. We
further compare the relationship between the option value (denoted by the y-axis) and the
volatility (denoted by the x-axis) in Figure 4.

Bond Option Value
0.008000000000

0.007000000000 R
0.006000000000 Ao"
0.005000000000 *®
0.004000000000 *
0.003000000000 o
0.002000000000
0.001000000000

0.000000000000 . . . . . . .
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 volatility

4 Bond Option...

Figure 4 Bond option values for different volatility

From the above figure, we find that when the volatility increases, the value of bond
option on ZCB increases. It is consistent with the inference for the Greek letter vega when
the underlying asset's volatility increases the option value increases, too.

5.2 The Valuation of Bond Options on Coupon Bondsin LMM

Now we extend our tree model to price a European bond option on a coupon bond. The
maturity and the strike price are 0.5 years and $100, respectively. The face value, the coupon
rate, and the maturity of the bond are $100, 5%, and 0.75 years, respectively. The coupons
are paid semiannually. We further assume the flat forward rate 5% and constant volatility
20%. The pricing results of our tree model areillustrated in Table 1. We use the Monte Carlo
simulation illustrated in Table 2 as the benchmark. It can be observed that the pricing results
of our tree model converge smoothly and accurately to 7.2564, the benchmark value
generated by the Monte Carlo simulations with 1000000 trials. But it takes much lesser
computational time (0.003 seconds) for the tree model than the Monte Carlo simulation (69
seconds).
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Table 1 Pricing a bond option with binomial tree

n tree t (seconds)

10 7.256405610765942 0.000257
100 7.256407987405482 0.000620
1000 7.256408225544007 0.003150

"n" denotes the number of stages in our tree model, "tree" denotes the prices generated by our tree
model. "t" measures the computational time in seconds.

Table 2 Pricing a bond option with the monte carlo simulation

m MC std 95% C.I. t (seconds)
100 7.2622 0.030202 (7.203,7.3214) 0.012615
10000 7.2514 0.0035163 (7.2445,7.2583) 0.689756
1000000 7.2564 0.00034602 (7.2557,7.257) 69.853408

"m" denotes the number of trials for the Monte Carol Simulation, "MC" denotes the option prices
generated by the Monte Carlo simulations, "std" denotes the standard error, "95% C.1." denotes the
95% confidence interval, and "t" measures the computational time in seconds.

To verify the robustness of our tree model, some sensitivity analyses are illustrated in Table
3 and Figure 5. Table 3 illustrates how the option val ues change when the forward rate curve
shifts gradually from 0.05 to 0.055. Obviously, the option values decrease smoothly as the
forward rates increase. The pricing results of our tree model also fall into the 95%
confidence interval generated by the Monte Carlo simulation asillustrated in Figure 5.

Table 3 Sensitivity analysis: The impact of change of forward rate

r tree MC std 95% C.1.

0.05 7.2564 7.2564 0.003439 (7.2497,7.2631)
0.0505 7.2303 7.2302 0.003471 (7.2234,7.2371)
0.051 7.2041 7.2041 0.003503 (7.1973,7.211)
0.0515 7.178 7.178 0.003535 (7.1711,7.185)
0.052 7.1519 7.152 0.003566 (7.145,7.159)
0.0525 7.1259 7.1259 0.003598 (7.1189,7.133)
0.053 7.0998 7.0999 0.003629 (7.0928,7.107)
0.0535 7.0738 7.0739 0.003661 (7.0667,7.0811)
0.054 7.0478 7.0479 0.003692 (7.0407,7.0552)
0.0545 7.0219 7.022 0.003724 (7.0147,7.0293)
0.055 6.9959 6.9961 0.003755 (6.9887,7.0034)

"r" denotes the forward rate, "tree" denotes the prices generated by our tree model with 1000 number
of stages, "MC" denotes the option prices generated by the Monte Carlo simulations with 10000 trials,
"std" denotes the standard error, and "95% C.I." denotes the 95% confidence interval. The numerical
settings for the bond options are the same as the settings mentioned the first paragraph of Section 5.2.
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Bond Option Value

7.3
7.25
7.2
7.15 === |ower bound
71 — — upper bound
Binomial tree
7.05
7
6.95 N 9 ) » %)
096 0@9%9‘" 0@'\%06 0651%9@ 0@‘5%96 0@"%96 Initial Forward
Q- Q- Q- Q- Q- Rate

Figure 5 The change of bond value with respect to the change of initial
forward rate

The x-axis and the y-axis denote the initial forward rate and the option value, respectively. The lower
and the upper bounds denote the bounds of 95% confidence interval generated by the Monte Carlo
simulation.

5.3 The Valuation of Capletsin LMM

A popular fixed income security is an interest rate cap, a contract that pays the
difference between a variable interest rate applied to a principal and a fixed interest rate
(strike price) applied to the same principal whenever the variable interest rate exceeds the
fixed rate. We consider a cap with total life of T and let the tenor &, the notiona value A
and the strike price K be fixed positive values. Note that the reset datesare T,, T, ..., T, and
define T,,, = T. Define the forward rate f (T;;T;,T;.1) as the future spot interest rate for the
period between T, and T,,, observed at time T; (1< i < n) . The payoff function of a caplet
atimeT,,is

AXExmax(f(T:T.T,) - K,0) (34)

Equation (34) is a caplet on the spot rate observed at time T; with payoff occurring at time
T..1. Thecap isaportfolio consisted of n such call options (caplets).
To derive the price of the cap, we have to price the caplet first and then sum up
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the n caplets' values to get the price of a cap. For a caplet price at time t, we use the
Black's formula mentioned in Section 3 (Equation (6)) to get the theoretical value as
follows:

caplet,(t) = AX8,X P(t, T, )/ (5T, T, )N(d)) — KN(d,)], (35)
where

_In(f(tT.T.)/ K)+ 0 (L =1)/2

o;,/]}—t ’

_In(f(;T.T,)/ K)-0/(T,—1)/2

oI, —t

After having the theoretical value as our benchmark, we use the payoff function to

dl

d2

compute the price with our recombining tree method. To get the payoff function at time T, 4,
we have to know the evolution of the forward rate f (0;T;,T;,,) at time T, . We construct the
binomial tree of f (O;T;,T,.,) and known the ( f (T;;T;,Ti,),—K)", r =0, 1, ..., i. We first
calculate the expectation of the payoff at time, and then multiply it with the value of ZCB
(P (t,Ti;1)) to get the caplet value at timet.

In the followings, we price a 10-period cap by computing each individual caplet
matures from period 1 to period 10. We assume that the tenor & and notional value A are
equal to one and the volatility is equal to 10%. Here the strike price K is 5%, the forward
curveis flat 5% and the stages n; for every period are equa to 25. We calculate the value of
one period caplet at time O (caplet; (0)).

caplet, (0) = Ax & XP (0,2) XE [max (f(L1,1,2)—K, 0)]
=1.1.P (0,2) - 0.0020112666
= 0.90702948 - 0.0020112666
= 0.0018242781
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Table 4 Pricing caplets with volatility=10% and stage n; = 25

Maturity Black Tree Difference Relative Difference (%)
1 0.0018085085 0.0018242781 0.0000157696 0.8719669656
2 0.0024348117 0.0024407546 0.0000059429 0.2440786919
3 0.0028388399 0.0028374958 -0.0000013441 0.0473484800
4 0.0031206153 0.0031282191 0.0000076038 0.2436631792
5 0.0033214311 0.0033204098 -0.0000010214 0.0307505629
6 0.0034637453 0.0034664184 0.0000026731 0.0771737036
7 0.0035616356 0.0035658574 0.0000042219 0.1185369137
8 0.0036247299 0.0036200240 -0.0000047059 0.1298286011
9 0.0036600091 0.0036633313 0.0000033221 0.0907678678

10 0.0036727489 0.0036743568 0.0000016079 0.0437804213

RMSE

0.0000063671

We assume that the tenor=1, the number of stages for every period is 25, volatility is 10%, and the
forward curve is flat 5%.

Table 4 illustrates the pricing results for different maturity caplets. Besides the relative
difference, we also use the RM SE to measure the difference between prices generated by our
tree model and by the Black's model (Black, 1976), where RMSE is defined as follows:

RM SE (Root Mean Square Error)

A frequently-used measure of the differences between values predicted by a model or an
estimator and the values actually observed from the thing being modeled or estimated. For
the comparing difference between two models, the formula of RM SE can be expressed as

RMSE(6,,6,) = MSE(6,,6,) = JE(6, - 6,)") = 2 G %) ’
n

where
X11 Xo1
X X
o,=| " and  O,= | *?
Xl n X2 n

Here, 0, and &, represent the prices generated by our tree model and the Black's model
(Black, 1976), respectively.

Now we change the stages from 25 to 50 to figure out the relationship between stages
and RMSE. The results are shown in Table 5.
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Table 5 Pricing caplets with volatility=10% and stage n; =50

Maturity Black Tree Difference Relative Difference (%)
1 0.0018085085 0.0018099405 0.0000014320 0.0791823392
2 0.0024348117 0.0024397802 0.0000049685 0.2040608652
3 0.0028388399 0.0028434461 0.0000046061 0.1622542164
4 0.0031206153 0.0031230795 0.0000024643 0.0789673074
5 0.0033214311 0.0033207434 -0.0000006878 0.0207066243
6 0.0034637453 0.0034620815 -0.0000016638 0.0480341136
7 0.0035616356 0.0035626664 0.0000010308 0.0289416315
8 0.0036247299 0.0036267433 0.0000020134 0.0555455781
9 0.0036600091 0.0036617883 0.0000017792 0.0486107386
10 0.0036727489 0.0036734197 0.0000006708 0.0182649876
RMSE 0.0000025690

We assume that the tenor=1, the number of stages for every period is 50, volatility is 10%, and the
forward curve is flat 5%.

We aso plot the RM SE with different stages between periods from 25 to 50 to see the
convergence behavior of RM SE. Figure 6 shows that the convergence behavior of RM SE for
the different stages. We find that when we increase stages between periods, both relative
difference and RM SE decrease and RM SE converge to zero with the stages go to infinite.

To see the impact of volatility on the value of different caplets and the convergence
behavior of RMSE, we change the volatility from 10% to 20%. We do the same procedures
aswe do in volatility 10%, and results for the 25 and 50 stages are presented in Table 6 and
Table 7 respectively. Finally, we plot the RMSE with different stages from 25 to 50 for
volatility 20% in Figure 6.

63



PRNNEIERESEE SR ERES

v

& 8 28

I

by

2]

R %

0.000007000000

RMSE with 10% volatility

0.000006000000 ay

0.000005000000 -

0.000004000000 -

0.000003000000

0.000002000000

—a— RMSE

0.000001000000

0.000000000000 -+

252627282930 313233 3435 36 37 383940 41 42 4344 454647484950 stage

Figure 6 RMSE with volatility 10%

Table 6 Pricing caplets with volatility=20% and stage n; =25

Maturity Black Tree Difference Relative Difference (%)
1 0.003612502 0.003629702 0.0000171997 0.4761162723
2 0.004857485 0.004880545 0.0000230598 0.4747275803
3 0.005656481 0.005664503 0.0000080217 0.1418144294
4 0.006210206 0.006193504 -0.0000167019 0.2689425754
5 0.006601645 0.006606642 0.0000049969 0.0756919625
6 0.006875986 0.006885656 0.0000096703 0.1406382089
7 0.007061574 0.007064876 0.0000033018 0.0467579666
8 0.007177804 0.007167478 -0.0000103258 0.1438570619
9 0.007238738 0.007241022 0.0000022831 0.0315395992

10 0.007255004 0.007260387 0.0000053836 0.0742052974

RMSE

0.0000120045

We assume that the tenor=1, the number of stages for every period is 25, volatility is 20%, and the

forward curve is flat 5%.
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Table 7 Pricing caplets with volatility=20% and stage n; =50

-
o

0.0072550037

0.0072576598

0.0000026562

Maturity Black Tree Difference Relative Difference (%)
1 0.0036125022 0.0036270258 0.0000145236 0.4020371797
2 0.0048574848 0.0048648548 0.0000073700 0.1517253656
3 0.0056564814 0.0056507415 -0.0000057399 0.1014746318
4 0.0062102056 0.0062167021 0.0000064965 0.1046097077
5 0.0066016455 0.0066036633 0.0000020178 0.0305658301
6 0.0068759861 0.0068743634 -0.0000016227 0.0235991644
7 0.0070615740 0.0070656730 0.0000040990 0.0580467885
8 0.0071778037 0.0071775957 -0.0000002080 0.0028984108
9 0.0072387385 0.0072386556 -0.0000000829 0.0011446687

0.0366117075

RMSE

0.0000060911

We assume that the tenor=1, the number of stages for every period is 50, volatility is 20%, and the
forward curve is flat 5%.

RMSE with 20% volatility
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Figure 7 RMSE with volatility 20%

We find that when the volatility increases, the value of caplets increases, and the
convergence rate of RMSE decreases. It is consistent with the observations in Lyuu (2002)
that high volatility makes the option more valuable and makes the convergence rate slower.
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6. Conclusions

Implementing the LIBOR market model with the tree method is difficult. To make the
pricing procedure efficient, we construct a recombining-binomial-tree model to depict the
evolution of the forward LIBOR rates. In our model, we have all the forward rates for the
different maturity at any node of the recombining binomial tree. With these rates on the
nodes, we can easily figure out the early exercise decision for the American-style derivatives
which is atough work in the Monte Carlo simulation.

After constructing the recombining binomial trees, the payoff of the interest rate
derivatives on each node of the tree can be obtained. The values of the derivatives can be
calculated by the backward induction method. We use the proposed model to calculate the
values of bond options and caplets. The values generated by our tree model are very close to
the theoretical values and the differences (or the pricing errors) decrease as the number of
stagesin our tree model increases.
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