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ABSTRACT

We review and modify the Karmarkar’s polynomial-time algorithm and
its variants for linear programming. These variants are interior point algorithms,
Newton barrier methods, and box method. Those algorithms still have poly-
nomial-time computational complexity. For logarithm barrier function al-
gorithm, each iteration updates a penalty parameter and finds an approximate
Newton’s _difection associated with the Kuhn-Tucker system of equations.
T his paper briefly discusses those algorithms and some extensions of Karmarkar
type algorithm to simplex method. We implemented those algorithms in
Fortran programs and tested the computational results for iteration numbers
and CPU times.

[Keywords] — Linear programming, Simplex method, Karmarkar’s algorithm,
Interior point algorithm, Barrier function, Box method, Poly-

nomial-time algorithm..

— 149 —



I. INTRODUCTION

The birth of linear programming is usually identified Wim the develop-
ment of the simplex method in 1947 by Dantzig [5]. Techniques for solving
linear programming have been studied for four decades. The simplex method
still remains the major algorithm used in linear programming, although recently
interior point methods are serious competitors. '

Two more recent approaches to solving linear programming are the
ellipsoid method (Khachiyan [10]) and the projective algorithm (Karmarkar
[9]1). Todd [16] found that the ellipsoid method and projective algorithm
are closely related. Both of the methods generate a shrinking dual ellipsoid
containir{g the optimal dual solutions.

In particular, Karmarkar’s projective method is a special case of a pro-
jected. Newton method applied to the logarithmic barrier function. Many
researchers are re-examining the effectiveness of methods that nonlinearize
a linear program. The proof of polynomial complexity of Karmarkar’s original
algorithm suggests that a suitable nonlinear transformation may overcome
the inherently combinatorial nature of the simplex method.

Lusting [12], Tomlin [17], and Adler et al. [1] have compared imple-
mentations of interior point algorithms with simplex method code. An imple-
mentation of Newton’s barrier method reported by Gill et al. [7] presents
the first extensive computational evidence indicating that an interior point
algorithm can be comparable in speed with the simplex method.

Zikan and Cottle [21] presented the box method, this algorithm uses
“boxes” or parallelepipeds. Each such box is associated with a basic solution
of constrains of the problem. The computation of each search direction is
done over the current box with subproblems of linear program. This interior
point algorithm makes no use of nonlinear programming.

In the simplex method, the current solution is modified by introducing

a non-zero coefficient for one of the columns in the constraint matrix.
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Karmarkar’s method allows the current solution to be modified by introduc-
ing several columns at once. The eliminating columns method (Ye [20])
is a modification of simplex algorithm.

This paper presents the modified variations of interior point algorithm by
Karmarkar and an algorithm based on the logarithmic barrier function ap-
proach (Moniteiro and Adler [14]). The logarithmic barrier function method
was first used for linear programming problems by Frisch [6]. The directions
generated by this algorithm are essentially the same as the algorithm of Kojima
etal. [11]. _

In section 2, we describe interior point algorithms with their initial
interior point and stopping criterion. In section 3, we present the logarithmic
barrier function algorithm. Section 4 and S are the box method algorithm
and the eliminating columns in simplex algorithm, respectively. Section 6

is the computational results and section 7 is conclusion.

II. THE INTERIOR POINT ALGORITHMS

Consider the linear programming problem:
LP1: max clx
s.t. Ax <D

where ¢ and x are n-limensional vectors, b is an m-dimensional vector and
A is a full rank m by n matrix. We assume that LP1 has an interior point,
x?, and is bounded.

Starting at x°, the algorithm presented generates a sequence of feasible

interior for LP1, {x' x?, ... xK .} such that

CTxk+l > CTxk.
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Suppose x = (x;, . . . ,xn)T is an n-vector, we denote D = diag(x,, . . .,
xn) to be the diagonal matrix, with the components of vector on the diagonal
and I Il to be the Euclidean norm. |

The stopping criterion is used to determine when to terminate the main
loop of the algorithm. The algorithm is terminated when the relative improve-

ment of the objective function is small, i.e., when
leTxk —cTxk=1 |/ max{1,lcTxk—1| }<e. 2.1

where € is a given small positive tolerance.

Now, we present an interior point algorithm for LP1.

' begin Algorithm A
Let x° and v be given such that Ax® <band 0 <y < 1.

Set k: =0
whﬂe condition.(z.l_) is not satisfied do
begin _ ‘

v:i=b — Axk

: D‘: = diag Afvy,-en, I/Vm)
d,: = (ATD2A) e
‘d'v:» = _Adx ‘
o =75 X min{vi/(d'v)il(dv)i’ <0,i=1,...,m }
k+l. = ¢k +oz.d'x
k:=k+1

end

»~

end.

If v = b—Ax is the vector of slack variables, we apply the affine trans-

formation D to y:
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Then rewriting LP1 in terms of w

T

max c'x
s.t. Ax+Dl'w=b
w=0

The algorithm selects a search direction
d= [dx dw] .
This direction is a solution to the homogeneous system

DAd, +dy =0
ATD(DAd, +d,)=0

so that
d, =—(ATD?*A)*ATDd,,.
We select d, as the steepest ascent direction
d, = -DAATD?A)"c.
From (2.5) we extract a solution to (2.2)

d =(ATD?A)"c

(2.2)
(2.3)

(2.4)

(2.5)

(2.6)

Also from (2.5), we can apply the inverse affine transformation to d,

resulting in
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d, = —AATD?A) ¢ | (2.7)

The above formulation allows for inexact projections without loss of

feasibility . In practice, we compute d according to (2.6) and adjust
d =-Ad (2.8)

to maintain feasibility.

The algorithm requires that an initial interior point x° be provided.
Numerically, it is desirable that this initial point be far from the facets of
the polyhedral set defining the solution space. Such an initial interior point

can be obtained by the following procedure:

Set x%: = (lbl/lAclc.
Ifv=b — Ax° >0, then
x° is the initial interior point.
else
y%:=-2 X min{v, |i= 1,...,m}
M: = a large constant.
M:=p X | cTxO|/y®
el:=(1,1,...,)F
Applied (x°,y?%) and algorithm A to the following LP problem:
LP,: max cTx — My
s.t. Ax — eTy <b
Suppose it is terminated at iteration k with (xk,yk)
if yk < 0 then xX is a interior point of LP1
if yX > 0 then LP1 is infeasible

- Now we consider the following standard form of linear programming

— 154 —



where A is an m X n matrix with rank m, m <n,b € R™M ¢ €R".

We describe another interior point algorithm for LP2.

begin Algorithm B
Let x° be an initial starting point.
Setk: =0
Choose € and « are small positive scalars.

while stopping criterion not satisfied do

begin
X: = xK
D: = diag(X;, . .., X,)
H: = AD

u: = (I — HT (HHT )" H] Dc
lul: =nfuTu |
if lull <e then
stop, xX is an approximately optimal solution to LP2.

else
p:=u/llul
ifpi<e,fori= 1,...,nthen

the LP2 problem is unbounded.

else
endif
q: =Max{pi|i= 1,...,n}
X:=1/q
xk+l. = ¢k —a)\Dp
Setk: =k +1
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endif
end

end.
Suppose X is a interior feasible point for LP2.

D =diag (X;,...,X
H=AD

y = (HHT ) HDc
u=[I-HI(HHT) ' H] Dc

m)

Karmarkar [9] proved that if LP2 is feasible and nondegenerate with
optimal solution x*, and X is a interior point, such that X € N (x*,8), then
¥ is a dual solution of LP2, such ¥ € N (x* £), where § and £ are sufficiently

small positive scalars. Then

u=Dc — DAT?
=D(c — ATy)

If u/ll ull <e, since € is for arbitrary small, so the dual of LP2 is infeasible,
that implies the LP2 is unbounded. If lull <e¢, then

Dc — AT§)=0
m
xi=ci—«j}ilAjiyi, fori=1,...,n

By the complementary slackness thedrem, X and y are the optimal solu-
tions of LP2 and dual of LP2, respectively. This proves that Algorithm B

can converges to the optimal solution of LP2.
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III. THE LOGARITHMIC BARRIER FUNCTION ALGORITHM

We consider the pair of the standard form linear program and its dual:

LP3: min clx D3: max bTy
s.t. Ax=b s. t. ATy+z=c
x=0 z20

where A is'an m X n matrix with rank m, b and y are m-vectors, and c, x,
z are n-vectors. We assume both LP3 and D3 are feasible.

We denote a point w = (x,y z) € R® X R™ X R". The logarithmic barrier
function technique is applied to the problem LP3.

R | 5
P#. min ¢ X — p'zl lnxj
J:
s.t. Ax=D
x>0

where u > 0 is the penalty parameter. As u converge to 0, we would expected
the optimal solutions of P# to converge to an optimal solution of LP3.

We denote X = diag (x;, . . . ,xn) and Z = diag (z,, . .. ,Z,,). The objective
function of the problem P)u is a strictly convex function. This implies that
the problem P, has at most one global minimum, and that this global mini-

mum, if it exists, satisfies the Kuhn-Tucker stationary condition:
(1) ZXe —ue=0
2) Ax—-b=0,x>0 3.1

3) ATy+z—c=0

Let w € S X T. We denote f(w) = (f; (W), . .., £ (w)T by



With this notation, the first equation of (3.1) becomes:
flw) =xwzw), i=1,...,n. | (3.2)
We denote by I' the path of solutions w(u), u >0, i.e.,
I = {w) = x(),y@)z@)l >0}

The algorithm C which will be presented in following, will “follow”
this path " with the objective of approaching the desired solutions of the
original problems (P) and (D).

We are now ready to describe the algorithm. At the beginning of the
algorithm, we assume that an initial point w® = (x%, y°,z°) €S X T is avail-
able such that the following criterion of closeness with respect to the path

I' is satisfied:
I f(w°) — ulel <ou® (3.3)

where u° is a positive constant,§ =0.1,ande=(1,..., I)T.
We now state the algorithm.

begin Algorithm C
Let w© satisfy (3.1) and u° > 0 satisfy (3.3).
Let e be a tolerance for the duality gap.
Let6:=0.1, 6: =0.1, v:=0.1

Set k: = 0.
while cTx¥ — bTyk <e do
begin
f: =xk,g:=zk,X:=diag(xl,...,xn),Z: =diag(zl,...,zn)

Choose s = (u,v) € R? X R}, satisfying:
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— <, i=1,...,n
| u.l

1

tgi—‘vil
—_— <y, 1i=1,...,n
lv.|

1
ukt =k — 8/ fm)
U: = diag(u,, . ..,u ) and V: = diag(v,, .- ., vn)
AxK: = [V —VIUAT(AVIUAT Y1 AV ) (XZe—pK T Le)
AyK: = —[(AVTUAT)Y 1AV | (XZe—uktle)
Az = [AT(AVTUAT)Y 1AV ] (XZe—pKtle)
Awk: = (axk,ay*, a2¥)
wktl. =k _ Awk.
Setk: =k +1
end

end.

If we denote the left hand side of equations (3.1) by H(w) = H(x,y ),
the Newton’s direction Aw at w € S X T is defined by

D, H(w)Aw = H(w)

where Aw = (Ax Ay Az) € R® X R™ X R" and DWH(w) denotes the Jacobian
of Hat w =(x,y z). We observe that D, H(x,y z) is given by

Z 0 X
J(x,z)EDwH(w)= A 0 O

0 AT T

The direction Aw is defined by the following system of linear equations
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Juv)Aw = H(x,y,2)

where the points u € R" and v € R" will be chosen to approximate x € R"
and z € R" respectively. More specifically, Aw = (Ax Ay, Az) is defined by

the following equations

VAxXx + UAz = XZe — pe 34

AAx =0 3.5)

ATAy +Az=0 (3.6)
where u > 0 is a prespecified penalty parameter, U = diag(u,, . . ., un), V=
diag(vy, ..., v ).

Note that the solution Aw = (Ax,Ay,Az) of the system of equations
(3.4)—(3.6) depends on the current inerate w = (X,y,z), on the Jacobian of
H at the “approximation” s = (u,v) of (x,z), and on the penalty parameter
u > 0. In order to indicate this dependence, we denote the solution (Ax Ay,
Az) by Aw(w s,u).

By simple calculation, we obtain the following expressions for Ax, Ay, Az.

Ax = [V! — VITUAT(AVTUAT) 1AV [ (XZe — uktle)
Ay = —[(AVTUATY 1AV ](XZe — uktle)
Az = [AT(AVITUAT) 1AV (XZe — pktle)

Therefore, to calculate the direction Aw = (Ax,Ay,Az), the inverse of
the matrix (AV™! UAT) needs to be calculated. If the current diagonal matrix
VU differs from the previous one by exactly k diagonal elements then,
by performing k rank-one updates, we are able to compute the inverse of
the matrix (AV"UAT) in O(n%k) arithmetic operations. Observe that all
the other operations involved in the computation of Aw = Aw(w s,u) is of

the order of O(n?) arithmetic operations.
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IV. BOX METHOD ALGORITHM
We consider the pair of the standard form linear program and its dual:

LP4: max clx D4: min bTy
s.t. Ax<b s.t. Aly=c
y=0

where A is an m X n matrix with rank n, m 2 n, b is m-vector, and c, x are
n-vectors.

Let X ={x| Ax <b}. We make the following assumptions:

(H IIAi.|l= I,fori=1,...,m

(2) There exists x° € R" such that Ax® <b
3) {xlcTx>cTx%, xeXx }is bounded.

We now state the box method as algorithm D.

begin Algorithm D
Let x° €int X and choose 8 € (0,1).

Setk: =0
while stopping criterion not satisfied do
begin
wk: =p — Axk and y: =wk
find an index set E C {1, ..., m} such that

{Ai.l i €E }are linearly independent and

Z 'y, isminimum.

i€E
B: = Ag. which is an n X n nonsingular matrix
k. = R"1
z :=B YE
q: = Az
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p: = min{y/a,lq;>0,i = 1,. ..,m}

s:=0p
if p=1and ¢UB! >0 then
the vector kD= kg 2K is optimal.
else
xktl, = gk g gk
endif
setk: =k +1
end

end.

The proof of the convergence to optimal solution of Algorithm D is

given in [21].
V. ELIMINATING COLUMNS IN SIMPLEX ALGORITHM
We consider the canonical form of linear program

LP5: min cIx
s.t. AX=D
x=0

where A is an m X n matrix, b is m-vector, and c, X, are n-vectors.

The simplex algorithm is revised to the following algorithm:

begin Algorithm E
Let x° be a feasible basic solution with canonical form LPS
Setk: =0
while stopping criterion not satisfied do

begin
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if ¢ 20 then
stop, xK is optimal solution
else
endif
ifS={6]c— SeT A > 0} is nonempty then
A= »(eTb) X max S
else A: =00
endif
p: = min{aij/bil b,>0,1<i<m}
if ¢, + A X min{0,p} > O then
eliminate column j
else
endif
select a enterihg variable x s
check the boundedness condition
select a leaving variable x ;
suppose the a s is the pivot element
ifaiSQO,iir or
b;/a; > max{4/| c I, b /2 } forall a, ;> 0,i#r
then pivot on a ¢ and eliminate column for x,

else pivot on a s

endif
replace A, c, and b with the new values
setk:=k+1
end
end.

The proofs of the eliminate column theorems are given in [20].
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VI. IMPLEMENTATION AND COMPUTATIONAL RESULTS

Those five algorithms described above were implemented using FOR-
TRAN 77 and the subroutines library on IBM 3039 and IBM 4341. Some
linear programming test problems were collected by Systems Optimization
Laboratory in the Department of Operations Research at Stanford University,
the other test problems 'are real-life problems. The statistics for the nine test

problems are shown in Table 1.

Table 1. Test problem statistics

Problems Rows Columns | Nonzeros optimal objective value
EX1 10 18 32 +3.1569741e+01
AFIRO 28 32 88 —4.6475315e+02
ADLITTLE 56 97 465 +2.2549496e+05
SHARE2B» 99 79 802 —4.1573224e+02
ISRAEL . 175 142 2358 —8.9664483e+05
E226 226 282 3038 —1.8751929e+01
BANDM 306 472 2659 —1.5862802e+02
SHIPO8 778 2467 7194 : +1.9200982e+06
SCSD8 397 2750 8584 +9.0500000e+02

Algorithms A, and B were run on the IBM 3039 at U.C.-Berkeley, U.S.A.
Execution times are compared to those of the simplex code MINOS 4.0 using
IBM 3039 [1]. Algorithms C, D, and E were conducted on the IBM 4341
at National Defense Management College, Taiwan. All CPU times represent
the time in seconds to read in the data from MPS format, solve the linear

program, and write out a solution. Algorithms A, B, and C terminate when
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the relative improvement in the objective function falls below € = 1078. The
computational results are presented in Table 2, Table 3, Figure | and Figure
2.

Table 2. Computational Results for Algorithms A, B, and MINOS

Algorithm A Algorithm B Simplex MINOS
Problems

Itrs. CPU Itrs. CPU Itrs. CPU
EX1 23 0.08 22 0.07 48 0.03
AFIRO 20 0.05 18 0.04 6 0.01
ADLITTLE] 24 0.13 22 0.14 119 0.23
SHARE2B 29 0.32 28 0.33 119 0.26
ISRAEL 37 4.01 42 431 281 1.54
E226 34 1.58 42 1.62 568 3.68
BANDM 39 1.87. 45 | 1.83 356 2.87
SHIPO8 32 1.35 30 1.32 657 9.16
SCSD8 23 1.82 22. 1.78 1590 | 14.53

The number of iterations (itrs. in Table 2 and Table 3) required by these
interior point algorithms (Algorithms A, B, C) is small when coinpared to
the simplex method and its variants (Algorithm E). The work per iteration
of these interior point algorithms .is more than the work required by the
simplex method. Algorithm D has more number of iterations and CPU times
than other algorithms.

These interior point algorithms attained 8 digit accuracy in the objective
function on all test problems with finite number of iterations. The selection
of an initial interior solution plays a significant role in the fast convergence.

For small problems, the simplex method and its variant have less execution
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times than these interior point algorithms. However, as problem size increase,
the interior point algorithms seem to have less iteration numbers and execu-
tion times.

Since we used two different size of computers to test the computational
results, but we do compared the variants of Karmarkar’s algorithm with the
variants of simplex method. For example, compared the Algorithms A and
B with the simplex MINOS program in one computer, and compared Algorithm

C with D and E in another computer.

Table 3. Computational Results for Algorithms C, D, and E

Algorithm C Algorithm D Algorithm E
Problems

Itrs. CPU Itrs. CPU Itrs. CPU
EX1 29 0.20 35 0.18 40 0.07
AFIRO 22 0.12 15 0.15 6 0.05
ADLITTLE | 30 0.38 54 0.49 106 041
SHARE2B 35 0.67 66 | 0.81 97 0.55
ISRAEL 45 7.52 137 6.25 225 3.63
E226 45 5.70 236 8.25 535 6.52
BANDM 52 4.31 187 7.85 312 4.75
SHIPOS8 39 3.38 241 16.94 572 18.74
SCSDS8 26 5.05 302 25.37 1459 - 23.54

VII. CONCLUSION
Karmarkar’s algorithm has variants which are interior point algorithms
and allow one to run with low iteration counts and solve linear programs

with upper bounds. Some interior point algorithms are nonlinear programming
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approaches such as barrier methods. But box method algorithm makes no
use of nonlinear programming approach.

Qualitative aspects (e.g., choice of «, 8, or €) can be found in the interior
point algorithms. The promise provided by these low iteration numbers and
CPU times for larger size problems is encouraging to warrant further research

into Karmarkar’s algorithm and its variants.
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