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A CONNECTED M-TREE RELAXATION
FOR M-TRAVELLING SALESMEN PROBLEMS

Chung-Hsing Huang *
- ERH

ABSTRACT

Utilizing branch-and-bound and relaxation techniques to solve large scale
m-travelling salesmen problems to optimum needs strong lower bound
procedures. Since the landmark 1-tree relaxation model devised by Held
and Karp for travelling salesman problems, some relaxation models, such
as: m-trees, augmented degree-constrained spanning trees have been de-
veloped for the solution of m-travelling salesman problems. This paper
presents a new graphical structure, denoted as connected m-tree, to be
a more promising relaxation model for m-travelling salesmen problems.
- Model, algorithm, and computational results are reported.

Key Words: Graph, Travelling Salesman, Algorithm, Relaxation
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I. INTRODUCTION

Because of the imbedded geographical directives in routing patterns’
setting, routing problems, one of the combinatorial problems with high
real-world practical value, but also with high intractability, have more
structure than incorporated in their currnt models. In the solution of
many combinatorial problems, the exploration of appropriate underlying
graphical constructs often provides some advantages in their algorithm
design, especially for the routing type problems [Ali & Huang 1988]. Held
and Karp introduced the 1-tree structure for the travelling salesman prob-
lems ('TSP), and took it as a relaxation for the model and solution design
of TSP [Held & Karp 1970]. This landmarked discovery encouraged re-
searchers to seek for better structures for those problems with similar
structures: an m-tree structure is introduced by Ali'& Kennington [Ali &
Kennington 1986] in their duality-based branch-and-bound algorithm de-
sign to solve asymmetric multiple travelling salesmen problems (m T SP);
augmented degree-consrained minimal spanning tree (DCMST) constructs
have been employed by Gavish & Srikanth [Gavish & Srikanth 1986] as a
relaxation for mTSP allowing immediate tours.

That the stronger the lower bound is, the more efficient the branch-
and-bound procedure performs is a common rule for the utilization of
relaxation technique in algorithm design of combinatorial type problems.
This paper introduces a new subgraph denoted as connected m-tree to
be a better relaxation model for mTSP, especially if the construction of
solution does not allow the existence of immediate tours. In order to put
the development in proper context. Section 2 contains a brief discussion of -
mTSP model. Section 3 presents various underlying subgraphs for mTSP
as well as the new representation of mTSP in terms of those constructs.
Section 4 then introduces the connected m-tree structure, together with
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the algorithm for its construction; Computational results and conclusions
are then included in Section 5.

II. MODELS OF MULTIPLE TRAVELLING SALESMEN PROBLEMS

The multiple travelling salesmen problem is defined on a graph G[N,E]
represented by the node set N = -{0, 1,2,---,n} and an arc set E = {eij |
i,j € N}. Theset N' ={1,2,---,n} with cardinality | N' |= n is the set
of non-base nodes and the node 0 is the base node. The arcsin £ = {e,J | -
i = Qorj = 0} are deﬁned to be base arcs, and E' = {e;; | i,j € N’} is the
set of non-base arcs. Associated w1th each arc e;; € E,isa cost coefficient
cij and a variable ‘zi; which has a value of 1 1f the arc is used in a solutlon
and 0 otherwise.

The mathematical representation of a symmetric multiple travelling
salesmen problem defined on G[N,E] with cost vector ¢ = (cij)ijen is
specified as follows:

mTSP -1 mlnz (cmzo, + Z c,]m1]> (2.1)

i=1 J=1,5#1

j=n
st ) zoj =m | (22
i=1

j=n
Dz =m (2.3)
i=1 '
j=n j#n ‘
Z Tij + Z Tij =2 fori=1,2,---,n (2.4)
J=0,j#1 J=0,j7#1
Z zij =| Sk | —1 | for any S C N', Sk # @ - (2.5)

i,jESk =
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Z zij=|N'|-m (2.6)

i,jEN'
Czi;=00r1l fori,j €N (2.7)

Constraints (2.2) and (2.3) ensure that exactly 2m arcs are incident
to the base node 0; (2.4) are the node-degree constraints specifying that
each non-base node have exactly two arcs incident to it; Constraints (2.5),
(2.6) and (2.7) define an m-component spanning forest. Thus feasible
solutions are defined by: (i) subgraphs of: G[N,E], which have exactly 2m
base arcs, and (n-m) non-base arcs which form an m-component spanning
forest and; (ii) the node-degree constraints for tour formation. We denote
the set of subgraphs of G which satisfy (2.2), (2.3), (2.5), (2.6), and (2.7)

by Xm. Thus the formulation can be represented more compactly as:

o ’ i=n j=n
mTSP —2 mjnz (Coi$0i+ Z ‘cijmij> .

i=1 j=L i
j=n j=n
s.t. Z Tij + Z Ti; =2 fori=12,.---\n (2.4)
J=0,j#i J=0,j7#1 v
z € Xm, where T = (zij)i jeN

Denoting the set of all m-tours on G by M™ a still more compact formu-
lation is obtained as follows:

i=n j=n
mTSP —3 minz <Coi$0i + Z Cijmij)

i=1 J=1,5#1
s.t.
zeM™ (2.11)

A degree-constrained spanning tree with m components is a spanning
tree on G in which the number of arcs incident to the base node is exactly
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m [Glover & Klingman, 1975]. Defining an augmented degree-constrained
spanning tree to be a degree-constrained spanning tree with m, additional
base arcs and the set of all a.ugmented degree-constrained spa.nriing trees to
be Z™, the multiple travelling salesmen problem can be stated as follows.

mTS'P 4 mm§ (co,:co,+ Z ngmq>

i=1 =L

J_n
s Z X+ x,,_z  fori=1,2,-:-,n (2.4)
_)=0,5# J=0,j#i g

zez™ o (212)

III. RELAXATIONS OF mTSP AND SELECTION OF .
: SUBGRAPH CONSTRUCTS

. There i is an 1mmed1a.te relaxa,tlon for the multlple travelhng sales-

“ men: A spanmng tree problem w1th m addlt}onal base arcs is a relax-

ation obtained by removing the node-degree constraints, s1mp1y given by

{mincdz |z € X m}, and then the La.grangean dual is obtained by dualiz-
' ing the node—degree constraints.

Assoc1at1ng the Lagra.nge mult1pher Ai with the node—degree con-

_ stramt for node i; a.nd letting the correspondmg vectors of Lagrange mul-

t1pl1er be given /\ we see that the Lagrangean relaxatmn with node-degree
constraints duahzed is g1ven by:

Il
3

M'

zeXm™

j=n
CoiToi + E Cij-’cij)

j=1,5#i

RO XM= T [

i=1

Z&( i%+§ wij-‘—Z):l | (3.1)

J=0,j#1 J=0,5#t .

.
Il
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- The Lagrangean relaxation to the multiple travelling salesmen prob-
“lem is given by ®()\, X™) and the Lagrangean dual simplifies to:

Maz | min 2 = '
A lzexm CoiZoi + Z CijTij

=1 J=1,5#i
- i=n =n J=n
S 8 it 3 e

In solving the Lagrangean relaxation for any of the relaxations dis-
‘cussed in the previous paragraph, the choice of the graphical construct
used to characterize the set X™ is central to development of an efficient
solution procedure. Some routing problems have been solved by the use
of graphical constructs very similar to the specifications for X™: Held
& Karp [Held & Karp 1970] introduced 1-trees for travelling salesman
problems; m-trees are introduced in ([Ali & Kennington 1986]) for mul-
tiple travelling salesmen problems; augmented degree-constrained mini-
mal spanning trees have been employed by Gavish & Srikanth [Gavish
& Srikanth 1986] as a relaxation to multiple travelling salesmen prob-
lems. While both m-trees and augmented degree-constrained spanning
trees meetv'the‘speciﬁcations of X™, each of them allow the existence of
immediate tours. o - '

In this section we develop the connected m — tree construct for the.

multiple travelling salesmen problem. Using the set of connected m-
trees for the set X™ instead of the set of m-trees or augmented degree-
constrained spanning trees allows a tighter relaxation. In order to place
‘the development into proper context, we first present a brief review of
m-trees and augmented degree-constrained spanning trees.

An m —tree on the graph G[N,E] consists of an m-forest on the
node set N’ and 2m base arcs connecting the base node 0 to non-base
nodes, as illustrated by Figure 1(a). When a degree-constrained span-
ning tree is augmented by m more base arcs as illustrated by Figure
1(b), the constraint (2.3) in mTSP-1 is satisfied. Henceforth we refer

to a degree-constrained spanning tree with m additional base arcs as
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an augmented degree — constrained spanning tree. Augmented degree-
constrained spanning trees can be obtained by first obtaining a degree-
constrained spanning tree with m base arcs and then selecting the cheap-

est additional m base arcs. Minimal weight degree-constrained spanning
trees can be obtained by use of a quasi-greedy algorithm as developéd in
(Glover & Klingman, 1975).

The efficiency of the procedure for solution of the construct employed
for X™ is important because it is used iteratively in the solution of the
Lagrangean dual

Maz | min = (c n ]=Zn
™ 0iT0: CijTij
AlreXT T j=1,i#4
i=n j=n j=n
S0 8 it $ e
=1 \j=0j#i =05

For multiple travelling salesmen problems allowing no existence of
immediate tours in a solution, as such these two constructs do not, or
can not provide the strongest relaxation. Modification of the augmented
degree-constrained spanning tree procedure so that immediate tours are
excluded is not straightforward. Without destroying the matroidal prop-
erty, the definition of an m-tree can be modified so that immediate tours
are not allowed. This is done simply by requiring that the 2m base arcs
of the m-tree be distinct. However, since m-trees are not necessarily con-
nected, such a modification still does not yield the strongest relaxation.

An connected m — tree on the graph G[N,E] is an m-tree in which

each of 2m base arcs connecting the base node to non-base nodes are dis-
tinct and at least one base arc is incident to some node in each component
of the m-forest on the node set N’ formed by the non-base arcs. In Figure
1(c) a connected m-tree is shown.
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(a) m-Tree Construct ( m =3 )

{c) connected m-Tree Construct ( m=3)

Figure 1: Various Graphical Constructs for Multiple Travelling
Salesman Problems.
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IV. QUASI-GREEDY ALGORITHM FOR MINIMUM COST
CONNECTED m-TREES

Let X™ be the set of connected m-trees on the graph G. For each
z € X™, let the corresponding arcs in the connected m-tree be given by
the set x. Before presenting the quasi-greedy algorithm for the solution of
{mincz | z € X™}, the following notation is introduced: Let H™ be the
set of m-trees on G and, corresponding to z € H™, let be the sets of arcs
of the m-tree. For the spa,nning forest on N’ formed by the non-base arcs,
the nodes in each component are given by subsets Nx,k = 1,2,---,m,
of N’. For each component k, link(k) denotes the number of base arcs
€oj €| J € Ni. A connected component of 7 is a component p, such that
there exists at least one base arc e,; € n (where j € N;). Note that for
each connected component p, link(p) > 0. An isolated component: of 1 is
a component, q such that link(q) = 0. P(i,j) denotes the set of arcs of the
 m-tree n on'the pafh from node i to node j where nodes i and j belong to the
same component. The set R, = {e, | er € P(i,7)for all i, with ey}, eq; €
n} denotes the set of removable arcs of the m-tree and the set of attachable
cross arcs from an isolated component q to a connected component p is
given by C, = {ec | ec = eij with i € Ny and j € Np}.

In much the same way that the quasi-greedy algorithm is designed for
degree-constrained spanning trees, the algorithm for obtaining a connected
m-tree proceeds by first obtaining the solution 7 to {mincz | z € H™}.
Clearly if no component is isolated, then 7 is the solution to {mincz |
z € X™}. Otherwise each isolated component q can be connected to the
base node by one of the following permissible exchanges. A permissible
exchange defines an exchange between an arc € n and another arc € g
which serves to connect the component q to the base node either directly
via a base arc or indirectly via a non-base arc. There are three types of
permissible exchanges:

1. The exchange between an e,; € x and an e,; ¢ x wherenode i is
in a component p with link(p) > 2, and j is anode in an isolated
component q as illustrate fromFigure 2(a) to Figure 2(b).
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2. The exchange_between an attachable arc e, in C,; and aremovable arc
in R, where q is an isolated component asshown from Figure 2(b) to
Figure 2(c).

3. A two-step exchange consustmg of: (a) the exchangebetween an eq; €
n and an €oj €M where node i is ina component p with link(p) > 2,
and jis a node also ina connected component p’( p may be the same
as p’); and(b) the exchange between an attachable arc e, in Cy and
one of the new removable arcs in R by the introductionof a new base
arc e,; in the previous step, where q is amsolated component Such
a two-step exchange is shownfrom Figure 2(c) to Figure 2(d).

(a) Minimal m-tree (20 nodes, m=5) with 3 isolated components

Figure- 2 :  Illustration of Construction of Connected m-Tree. (continued)
( ~———— ecnicring arc ; em———— leaving arc)
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(c) Intermediate m-tree via type-2 permissible exchange

Figure 2 : INlustration of Construction of Connected m-Tree.
( -~ entering arc ; == leaving arc) -
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(d) Intermediate m-tree via type-3 permissible exchange

Figure 2 : Illustration of Construction of Connected m-Tree. (continued)
( ~~wmemeee entering ar¢ ; - leaving arc)

A type-1 exchange directly connects an isolated component to the
base node without destroying the connectivity of existing connected com-
ponents of 7. A type-2 exchange removes an element of the set of remov-
able arcs which belongs to the path P(s,t) where s and t are nodes of
some connected component p. When this arc is removed, the component
p is split into two connected sub-components. When an attachable arc
of the isolated component q is introduced, it is connected to one of these
connected component. In either of the these two exchanges the number of
isolated components reduces by 1. A type-3 exchange is a combination of
type-1 and type-2 exchanges. First, a base arc of a connected component
is removed and replaced by another base arc to a connected component.
By such an exchange, the set of removable arcs changes. Then a type-2
exchange is performed whereby an attachable arc is introduced and one
of the newly created removable arcs is removed.

Algorithm: Minimum Cost Connected m-Tree

Step 0 Let 7 solve {mincz |z € H™}

k = number of isolated components in 7;



Chung-Hsing Huang -

fort =1,---,k, do
begin
Qgyt ¢ —00, Qip — O]
Bin + 00, Bout — —00;
Zg_q «— 00;

Step 1 For each connected component p, find link(p);

For each isolated component q (non-base node set N,), do
begin
Qin — (@in, mingen, {c(e0i)});
Bin — (Bin, ming, ec, {c(e:)});
end ;

For each connected component p, do
begin
If link(p)> 2, aut «— max(a,,ut,ie max ex{c(eg,')});

pi€oi
Find removable arcs e, in E, ,

Bout + max(Bout, gllag(r{c(er)});
end;
For each eg; € x,t € any N?, do
begin
Find additional removable arcs of ep;e, in Ep;
If (Bin—, gllagf{c(er)} + c(eoi) — aout) < zg—2, then
292 = (B mase{eleh)} + clens — aond)
end

end;

323

Each time a pivot is performed, the number of isolated components

is reduced by 1. Thus if there are k (k¥ < m) isolated components, exactly

k permissible exchanges are performed in constructing a minimum weight

connected m-tree. Since the cheapest of permissible exchanges is chosen,

validity of the procedure is ensured.
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V. COMPUTATIONAL RESULTS AND CONCLUSIONS

Table 1 reports computational testiﬁg with four graphical constructs
which can be used for the definition of X™ in the model for the multi-
ple travelling salesmen problem. The objective function values obtained
when the problem {mincz |z € X™} is solved are tabulated where X™ is
defined to be:(1) the set of augmented degree-constrained spanning trees
which allow immediate tours and are connected subgraphs; (2) the set of
m-trees which allow immediate tours and are not necessarily connected
subgraphs (3) the set of m-trees which do not allow immediate tours and
are not necessarily connected; (4) the set of connected m-trees which are
connected by definition. The comparison of the objective function val-
ues is tested on randomly generated dense graphs with 20 and 50 nodes.
The m-tree relaxations with and without immediate tours are solved using
a greedy algorithm while the other two employ quasi-greedy algorithms.
The connected m-tree provides the strongest relaxation for the balanced
multiple travelling salesmen problem as evident from the objective func-
tion values in the table. For the five 20-node problems, the connected
m-tree has an objective function value which is on the average 8% higher
than that for the augmented degree-constrained spanning tree, 22% higher
than for an m-tree with immediate tours, and 7% higher than for an m-tree
without immediate tours. For the five 50-node problems, the connected
m-tree has an objective function value which is on the average 4% higher
than that for the augmented degree-constrained spanning tree, 14% higher
than for an m-tree with immediate tours, and 8% higher than for an m-tree

without immediate tours.
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Table 1 : Comparison of Relaxations to Multiple Travelling Salesman Problems

1D n m A-DCST m-Tree(l) -m-Tree(2) C-m-Tree
A 20 4 459.95 448.98 475.47 480.34
B 20 4 378.65 306.67 370.16 411.45
C 20 4 - 374.44 354.05 395.59 403.34
D 20 4 284.37 245.63 281.73 314.20
E 20 4 343.06 284.59 337.65 367.27
A 50 5 1490.54 1377.30 1475.90 1579.17
B 50 5 1483.59 1349.35 1429.24 1539.41
cC 50 5 1472.98 1387.41 1457.40 1531.81
D 50 5 1368.21 1205.42 1262.41 1413.84
E 50 5 1301.26 1180.04 1248.10 1339.22
Note : '
1. A-DCST : Augmented degree-constrained spanning tree with immediate tours.
2. m-tree(1) ; m-tree with immediate tours.
3. m-tree(2) : m-tree without immediate tours.
4. C-m-tree : Connected m-tree.
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