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TECHNOLOGY BREAKTHROUGH
WITHIN EQUIPMENT REPLACEMENT MODELS
UNDER MARKOVIAN DETERIORATION

Sung-Chi Wu*
g
ABSTRACT

Extending Nair (1989) study, this paper deals with the equipment replacement
under Markovian deterioration and technological obsolescence. We assume that
the accumulated impact of the new knowledge results in a single technology
breakthrough and consequently improved equipment is available on the market.
A crucial issue in management is to decide for each period whether to keep using
the existing equipment or to procure new equipment so as to maximize the total
expected discounted reward in the infinite horizon. Two functions have to be
taken into consideration for deciding on an optimal policy, namely, reward
functions and conditional probability distribution function of -technology
breakthrough. The reward functions depend on the state and the age of
equipment, and the conditional probability distribution of technology
breakthrough is based on the shock model of Aven and Gaarder (1987) with
revision. We then establish the recursive formula by using stochastic control
theory. We prove that the conditional probability distribution of technology
breakthrough is constant after technology forecast period under some reasonable
conditions. We also show that the optimal policy has a special control limit
structure form of equipment state and age. Furthermore, we prove that the
optimal value function is nondecreasing when technology breakthrough rates are
nondecreasing in time. Ultimately, the existence of a forecast horizon for
optimal replacement policy is demonstrated.
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I. INTRODUCTION

Advanced technology shortens the useful life of sophisticated products such
as electronics and computers. With the technology breakthroughs on the
market, decision makers of manufacturing and service firms have to decide
whether to keep the existing equipment or to replace it with a better technology.

Relevant studies of economic life of equipment originated from Preinreich
(1940) and Terborgh (1949). Bellman (1957) brings forward the body of
literature addressing the model on replacement problem under Markovian
deterioration. Later, Dreyfus (1960), Derman (1963) inherits Bellman's study
and come up with stochastic deterioration of the equipment (for surveys, see
Barlow et al. (1965), McCall (1965), Pierskalla and Voelker (1976), Sherif and
Smith (1981)). _

In terms of the optimal replacement, most of the above models ignore the
prospect of rapid technological improvement. In this article we are interested in
the problem of replacing a system subject to deterioration with technology
improvements. Models of this kind were analyzed by Sethi and Morton (1972),
Sethi (1973), Elton and Gruber (1976), Sethi and Chand (1979), Chand and
Sethi (1982), Oakford et al. (1984), Bean et al. (1985), Kusaka(1986), Goldstein
et al. (1986,1988), Bhaskaran and Sethi (1987), Hopp and Nair (1991), Nair
and Hopp (1992), and Bylka et al. (1992). They arrived at the conclusion that
forecast horizons can solve the infinite horizon problem. The forecast horizon is
defined as the minimum number of periods of forecasted information required to
guarantee the initial optimal decision, regardless of forecasts in later periods.
None of these papers, however, consider Markovian deterioration with
stochastic technological forecasts. Only Nair (1989) addressed the equipment
replacement decisions due to technological obsolescence under Markovian
deterioration. He proves that control limit structure exists for the optimal policy.
Under certain conditions the control limit is nondecreasing with increasing rate
of technological change. Besides, he investigates the existence of the forecast
horizon to optimize the infinite horizon problem.

In Nair's study, however, the equipment age is not taken into account,
neither is the probability distribution function of technology breakthrough. In
our study, we consider all the above factors, especially the equipment age  and
the impact of the new knowledge. We follow the shock model in Aven and
Gaarder (1987) in explaining the impact of the new knowledge and technology
breakthrough as a result of shocks, different from the original concept of in
which the system would fail at any point in time due to the accumulated -
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damages. Finally, based on some reasonable conditions, we then obtain a
much more feasible optimal replacement policy for management applications.

II. MODEL DESCRIPTION

We consider a firm owning two pieces of equipment of the present level of
technology. We also assume that at most one new technology may appear in the
future. Usually, the equipment is undergoing deterioration over time and can be
observed completely. The problem of the firm is trying to decide whether to
keep existing equipment or to replace it with an equipment of better technology
currently available on the market. We then consider the case where the
equipment replacement action must be done instantaneously at the beginning of
the period. The firm's objective is to find a sequence of replacement actions so
as to maximize the total expected discounted reward over the infinite horizon.
Our notation are stated below.

X: equipment set, X = {0,1} where the performance of equipment "1" is
better than that of equipment "0".

Y : equipment set, Y = {0,1,2} where the performance of equlpment "2" is
better than that of equipment "1".

D, : state space for equipment g, D, = {1,...,mg}, geY, m,eN, m<Q

where index 1 represents the "new" equipment and m, a "broken
down" equipment. ; ‘

k, : the action "keep using existing equipment g".
R, : the action "replace with new equipment q".

A(g,n,i;X): action space for state (g,n,i;X), and let A(g,n,i;X) = {k,, R, ,q € X};

similarly, A(gn,i;Y) for state (gniY), and let A(g,n,1 Y)
{K;,R;;9 €r}.

p(gn,ia): bounded immediate reward for actiona € {A(g,n,i;X) v
A(gn,iY)}.
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P,,(Y]X) : conditional probability of technology breakthroughs where Y is

available at the beginning of period t+1, given that technology
breakthroughs in X are available at the begin ning of period t.

P, : Markovian deterioration matrix of equipment g at age n under action

a', and let P, =[p; (i, /)], where Dgn(i,j) denotes the transition .

probability if equipment g at age n in state i and action a is performed, then
it deteriorates to state j.

¢; - procuring cost of equipment i, i =0,1,2 ,where ¢, < ¢ <c,
B : one period discount factor, 0 < § <1.

S (g,n,i;X): optimal value functions in periods t through T, discounted back
to the beginning of period t, given the state at t is (g,n,i;X);

similarly £,"(g,n,i;Y) denotes at the state (g,n,i;Y) .

7; (gn,i;X): optimal action in state (g,n,i;X); similarly, 7 (g,n,i;Y) denotes at
the state (g,n,i;Y). '

1. ASSUMPTIONS

To characterize the structure of the optimal policy, we will make use of the
following assumptions.

(A1) The Markovian deterioration matrix P, =[p.,(i,/)] is assumed to have

P (,)<lforallieD, ~{m,}, ae{A(gni;X)UA(gn,i;Y)}, and .

Z Dgn(i, j) is nondecreasing in i for all & €D,.
j=k

Assumption (1) assures that the underlying Markov chain is upper triangular
and has the IFR property (Derman (1963)). i.e., If we keep using existing
equipment, then the equipment will accelerately deteriorate in its worse state.

(A2) Let >, represent "Stochastic Dominance Partial Order",if P, >, P2 and

gn —st T gm



Sung-Chi Wu 317

m > n, then the following conditions are equivalent:

OEDN A ESN A R)
and

(i) > Pomli. ) 2 3 p5, i, j) for i,j,k eD,.
jzk

jzk

Assumption (2) implies that the older equipment tends to deteriorate much
easier than that of younger ones.

(A3) For any fixed a, we assume
a) p(g,n,i;a) is nonincreasing in i for all n.
b) p(g,n,i;a) is nonincreasing in n for all i.

Assumption (3a) denotes that equipment states with lower index gain a- higher
immediate reward. Similarly, assumption (3b) states that ages with lower index
gain a higher reward.

(A4) The better the equipment technology is, the higher the maximal total
expected discounted reward will be.

Assumption (4) claims that we always replace the existing equipment with
the updated equipment on the market, i.e. the equipment will be more dominant
when it first appears on the market.

(A5) For m=n and any action a, there exists a state k € D, such that

k=min(l-6,,(,/)20,j < and €., /) <0,j21)
where
9:,,,(1,]) = p;n(i’j)_p;m(i’j)

Assumption(5) addresses that there exists a certain state with the age of the
equipment considered: older equipment tends to deteriorate faster than that of
the younger ones. In fact this assumption is similar to that of the assumption (2)
but with stronger means.
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IV. MODEL FORMULATION

First of all, we need to construct information state space (S) in terms of g,
n, i, X or Y as follow:
S={ {gni,;X} v {gniY} }.
For notation convenience, we will let X ={X)Y}, where X={0,1}, Y

={0,1,2}. The optimal value function over the finite horizon given state (g,0,i;X)
at time t can be written as follows:

fleniX)

= maxx)p(g,n,i;a) +ﬂ'z_pt+1 (X.lX){Zp;n(l’J)ftL(g’nal:X')} (1)

acA(g.n.i; 720

for all (g,n,i;X) € S.
We. define
7 (g,n,i;X)

_ (7 eA@nEX): AHE5a)+B Y P (X1 X P N (81555 X}

j=20

2 p(g,n,,8) +B Y, P (X1 X)X g, ) fra(8:m15 XD}

j20

for a,a € A(g,n,i; X)},

where

—c. +r(q,0,1), a=R
plgnia)=4 ° .(q ) !
r(1,0,7) , a=kK, , 849 eX.
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and

a(- .) pqo(i:j)3 a=Rq
Po,G. 0= .
£ PnG.J), a=K,,g.qeX.

Similarly, f,7(g,n,i;Y) has the form same as above.

To develop the probability distribution function of technology breakthrough,
we need the following:

(A6) The magnitude of new knowledge impact contribution index is
independent of the occurring time.

The new knowledge impact model can be established by referring to the

. shock model of Aven and Gaarder (1987) with revision, as follows:

Let (£2,2,P) be a complete probability space, and {F,, t = 0,1,2,...} be a
nondecreasing family of sub—o—field of X such that F, includes all null sets of

X. The o—field F, represents the set of information without the occurrence of
technology breakthrough up to time t. We also let V be the appearing time of
technology breakthrough, then event { V>t }e EF ,t=0,12,---

Under the assumption where technology breakthrough can possibly occur at
the new knowledge impact, we define

1, new knowledge impact occurs at time t.
0, otherwise

and let
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U,=0,u €[0,1]

where 4
U, : contribution index of new knowledge impact occurring at
time t.
~ Then
PW, =1F}=a,, t<V,
where :
a,: the conditional probability that a new knowledge impact
occurring at time t+1, given that the technology breakthrough
doesn't appear up to time t.
Hence
p{U,., <ulF,voW,.)}
= u,tﬂHt (u) +(1 - u’tﬂ)l{u > 0}
_[H@), W=1
1 , Wa.=0t<v
where

H,(u): the conditional probability distribution of contribution index u for
the new knowledge impact occurs at time t+1, given that the
technology breakthrough doesn't appear up to time t.

Moreover
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p{V =t+1|F,voW,,)}
=W (W) +(1-W,,)g,
) {I, @), W, =1
- g > Wa=0
where

I(u): the conditional probability that the téchnology breakthroigh

appears at time t+1, given that technology breakthrough doesn't
appear up to time t, whereas let the new knowledge impact
contribution index be u at time t+1.

g,: the conditional probability that the technology breakthrough
appears at time t+1, given that technology breakthrough doesn't

appear up to time t, whereas the new knowledge impact doesn't
occur at time t+1.

V. STRUCTURAL RESULTS
Before showing the main results, we need the following technical lemma
to develop the conditional probability distribution of technology breakthrough.

Lemma 3.1: Under assumption (6), we have

P, (YIX)=a, t=12,.
where

1
o, =a,[1@)H, (&) +(1-a,)g,
Proof:



1322 _ BREHER® > BUEFE—M

F.(T|X)

=Py =t+1}

=E[P{V =t+1F,vo(W,,,U,.,)IF]

= E[W, ], (Uz+1)|+(1 -W..)g | F]

= E[W..E[L (U, IF v oW, )]+ g P{W,, =0 F}

= EIW,, [1,@)H, (@) F]+(1-a,)g,

=a,[1L@H @)+(-a)g,. O

Next, by using Lemma 3.1 and assumption (4), recursion (1) can be
rewritten as follows foreachg € Xandt=0,1,2,...,T-1:

R: ~¢+f1(i,0,1,X)
17 (g,n,i; X) = max

K, : r(g,n,i)+B [(1- @)D P, (i, N finn (81 +1,/: X)

» +atngn(i’j)le(g’n+l’j;Y)] (2)

where

SIA0LX) =r(1,0,1) +8[(1-2, ) 2 pio(LJ) fia(L,LiX)

t q, Zplo (l,j)f,i,(l,l,j;Y)]

j21

Similarly, f,7(g,n,i;Y) can be presented as follows foreach g € Y :

RZ:—CZ +.ftT(2’0a1;Y)
17 (gn,i;Y) = max | ©)

K r(g:mi)+BIY. P, Nf5(8m+1,5Y)

]
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where

fF20.5Y)=12,0,1) + AL 3 Peu(L, ) £1(215Y) ]

j21

Theorem 3.1: Kfa, , g, ,1, (u) and H, (u) are bounded and nondecreasing in t,

then there exists t*€N, such that P, (Y|X) is a constant for all t >t*.
Proof: By Lemma 3.1, we know that

P (F1X)=a, [1,G) H, (du) +(1-a,)g,

Moreover, by monotone convergence theorem, it is easy to show that
there exists t* € N, such that a, , g, converge at some constants, and 1, (u),
H, (u) converge at 1(u) and H(u) for all t > t* respectively.

Hence, these results complete the proof. O

Lemma 3.2: Under assumptions (1) and (2), if £,(j) be nonincreasing function in

j for any fixed n, then Y p%, (i, /) £,(j) is nonincreasing in i.
jai

Proof: It is done by Derman's Lemma (1963). O

Lemma 3.3: Under assumptions (2) and (5), if £, () be nonincreasing function in

n for any fixed j and be nonincreasing in j for any fixed n, thenz Pe, @, NS, (J)
. j=i
is nonincreasing in n.

Proof:

()Ifa=R,, then Y. ps.(i,/)=2 P, J) satisfied the result:
jai

j21

@) If a=k,, then Y p,,@,))= > P,a(i, J). Putting m 2 n, by using
j2i

21
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‘assumption (5), there exists k such that i<k<m_, and

Pen(i,)) = Pem(i, ) 20 forj <k; p,(i, /)~ Pm(i, /) <0 for j2 k.

Furthermore, with the assumption (2) along with above k, we have
Zpgn(’:.])fn(]) —Zpgm(l’])fm(])
jai j2i

= 2P NF (D) = 2 Pen 6o NI w2 Pn (o 1,1 = . PG, ()

jzk jzk

WM )VAGESW M) VX DW M )VIOESWME)AC)

j2k jzk

= 2| 2l =Pl DIODAZ] Pl )= 2 ) 11,01
23 Pl )= Pl DD Ponl )= Dl 1) 1, B)
J<k jzk

= Peu (o 1)+ 2 Pen (DI Pl )+ PG, DB, ()

j<k jzk j<k jzk
= 0

Therefore, from cases (i) and (i), the lemma is proved. O

We can achieve stronger structure conclusions, if we set the boundary
conditions as below:

fr(gni; X)=L(gniX), g=0,1

fTT(g;n’i;Y)= L(g,n,i;Y), g= 0:1:2
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Tt is obvious that all boundary conditions above are non-negatives. From

here and by Lemma 3.2, we get the following.

Lemma 3.4: Under assumptions (1)-(6),
a) If L(g,n,i;Y) is nonincreasingin i for any fixed n and g eY then

f7(g,n,i;Y) isnonincreasing ini.
b) If L(g,n,i;Y) is nonincreasing in n for any fixedi €D, and g€eY, then

f7(g,n,i;Y) is nonincreasing in n.
Proof of (a): From recursion (3), and Lemma 3.2, it is easy to see that

fI (g,n,i;Y)is nonincreasing in i.
Now, we suppose that f,7,(g,n,i;Y) being nonincreasing in i holds, and we

show that this implies that f7(g,n,i;Y) is nonincreasing in i. Since p(g,n,i;a)
is nonincreasing in i, the result follows from Lemma 3.2 by induction.

Proof of (b): Similarly, it is shown that fl(gniY) is nomncreasmg inn
directly with Lemma 3.3. O

Lemma 3.5: Under assumptions (1)-(6),

a) If L(g,n,i; X) is nonincreasing in i for any fixed n and geX, then
f7(g,n,i; X) is nonincreasing ini.

b) If L(g,n,i; X) is nonincreasing in n for any fixed i € D, and g€X, then

f7(g,n,i; X) is nonincreasing in n.

Proof: From recursion (2), it has the identical approach on the Lemma
3.4, the proofis done. [ :

To further characterize the value function and optimal policy for recursion
(2) and (3) under infinite horizon, we define

}i_r’t}of,’(g,n,i;X);ﬂ(g,n,i;X) . ' (4)

lim £ (g,m,i:7)= f(&:n.1Y) | ' ()
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We are particularly interested in the infinite horizon optimal action
7, (g,n,i; X) and n(g,n,i;Y) respectively. To do this, let

4 (g.n,i; X)
=.—cl +[r(ls 0: l)_r(g’n:i)]+ﬂ(l—at)[zplo(laj).ftil (13 1:]: X)
_Zpgn(la.])f;il(g’n"'l’.]) X)]"'ﬂat[zplo(l:j).ftzl (lalaj’Y)

Jjz21

_Zpgn(ls.])ftil(gan'*'la.]’y)]
ja2i
And let T — o, we then have

A (g,n,i; X) = A,(g,n,i; X)
Similarly,

AY(g,n,iY) = A(g,n,i;Y)
where

Ag,misy) = —¢, +[r@,0,)-r(gmd]+8 [ pu (LN 2L 1T)

J21

-2 P @) f(g.n+1,j;1)]

We also define the control limits of equipment state and age,

i;(g)=min {i: 4,(g,n,i;X)>0 forallne N}
n,(g,i)=min {n: A,(g,n,i, X)>0 foralli<i (g)}.

and
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i*(g)=min {i: 4,(g,n,i;Y)>0 foralln eN }
n (g,i)=min {n: A,(g,ni;Y) >0 foralli<i*(g) }.

From the above conditions (4) and (5), and with Lemmas 3.1 to 3.4, we can
get the main theorems. '

Theorem 3.2:
a) In state (g,n,i; X) for each period t, there exists an integer i;(g)eD, such
that z, (g,n,i; X)= R, ifi2i;(g) foralln. '
b) If i <i;(g), then there exists n;(g,i)eN such that z,(g,ni;X)=R, for
n>n;(g,i)andz,(g,n,i; X) =k, for all n<n;(g,i).
Proof of (a): It is sufficient to prove that A,(g,n,i; X) is nondecreasing in i for

all fixed n and A,(g,n,i; X) is nondecreasing in n for all fixed i. Hence, using

Lemmas 3.2 to 3.4, and assumption (3), it follows that A4,(g,ni;X) is
nondecreasing in i for any fixed n and is nondecreasing in n for any fixed i.

Thus, there exists a control limit i;(g) such that if i>i(g) then

7, (g,n,i; X)=R, foralln. The result of (a) is proved .
Proof of (b): From Lemmas 3.3 and 3.4, and assumption (3), we can easily

show that A,(g,n,i; X) is nondecreasing in n for each i <i;(g).
Hence, there exists a control limit n;(g,i) such that if n>n(g,i) then
A, (g,n,i; X)>0 and z,(g,n,i; X) =R, and if n<n;(g,i) then A,(g,n,i; X)

<0 and7z,(g,n,#; X) =k, . Leading to the result of (b). O

Theorem 3.3:

a) In state (g,n,i;Y ), there exists an integer i (g), such that
m(g,n,i;Y)=R, if i i°(g) forall n.

b) Ifi <i*(g), then there exists n”(g,i) € N such that #(g,n,i;Y) = R, for all
n>n'(g,i) and n(g,ni;Y)=k, foralln<n'(g,i).

Proof: By the same token, the result of (a) and (b) is proved. O
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To strengthen the properties of the optimal policy structure in Theorems 3.2
and 3.3, we need the following: :

Corollary 3.1:
a) If i <i; (g) then n; (g,i) is nonincreasing in i.
b) Ifi <i*(g)then n"(g,i) is nonincreasing in i.

Proof of (a): Suppose 7, (g, j) <n;(g,k) where j <k <i;(g).
By using the proof of Theorem 3.2, it implies that

Al(gan:k;X)ZAt(g,n;j;X) forallh
and
A (g1 (g.k).k; X) > A,(g,n(g,)),k; X) forallk.

Moreover, by the definition of n; (g,i), we know that

A, (g1 (g,k),k; X)20 and A,(g,n;(g,)).k; X) <Oforallj<k

which together imply

A,(g.1,(8.k).k; X) 2 A, (8,1 (g, 1), k; X)
2 At(g:nt‘(ga])’.]’ X) > 0

It is clear that A4,(g,n/(g,/),k;X)>0 contradicts
A(g,n(g,j) k; X) > 0, and the fact that n;(g,i) is nonincreasing in i for
alli<i’(g).
Proof of (b): The proof is thoroughly analogous to that of part (a). O

For convenience sake, the structure of the optimal replacement policy
derived by the above Theorems 3.2, 3.3 and Corollary 3.1 can be depicted in
Figures 1 and 2, respectively:
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age

n t*(g’i)
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|
1 2 ... it¥g) .. mg
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Figure 1. Optimal two-regions policy from
Theorem 3.2 and Corollary 3.1(a)

age

n*(g,i)

Ke

> state
1 2 ... i*gi) .. mg

Figure2. Optimal two-regions policy from
Theorem 3.3and Corollary 3.1(b).
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Lemma 3.6: If ¢, is nondecreasing in t and 7,(g,n,i; X)=R, for some t, then

f.(g,n,i; X) is nondecreasing in t.
Proof:

(i) By Theorem 3.1, we have «, = a for all t > t* where  €[0,1]. Hence,

f.(g.ni; X)= f,(g,n,i; X)= f(g,ni; X) forany s, t> t*.
(i) Let s=t*-1

Since Y DX, it implies that f(g,n,i;¥) > f,(g,n,i;Y) forall t, we know
f(gni; X)=—¢ +f,(1,0,1, X)
=-¢+r(LOD+f [(1- )X pu G, Nf (L1, j; X)

+a, 2 Po(LNS WLJD)]

<-q ;r(l,o,l) +B [(1-a)[§p,0(1,j)7(1,1,j; X) -
+a§pm(l,j)f(l,1,j;Y)11

= 7(;,71,1'; X)

= fen (81,5 X)

Suppose k <t*-1and f,(g,n,i; X)< f,.,(g,n,i,X) holds. Then

fk—l (gsn’i; X) = _cl +-fk—l (1’0’ 1’ X)
=—¢,+r(1,0,)+8 [(1- &, )Y P (L) £, (L1, j; X)

j21

-+ ak—lzplo(lsj)f(l’ 1aJ>Y)]

J21
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< _cl +r(1a 0’ 1))+ﬂ [(1 - ak—l)[z plo (l’j)7k+l (l’ l’Ja X)

jz21

+ ak-lzplo(lij)f(l’lxj;y)]

Jj2l

<—,+7(L,0,)+8 [(1-a )X Pl NS e (L1 j; X)

2l

+ akzplo(laj)f(la I’J:Y)]

j2l
=fk(g’n’i;X)

From cases (i) and (i), the proof is derived by induction. O

Lemma 3.7: If e, is nondecreasing in t and z,(g,n,i; X) =k, for some t, then

f,(g,n,i; X) is nondecreasing in t.
Proof: The proof is similar to that of the above and is omitted. O

From the above lemmas, we derive the following theorem, implying that the
conditional probability of technology breakthrough is nondecreasing in time and
that the optimal value function is also nondecreasing. It means that we prefer
prompt technology break-through which brings forth the increasing reward.

Theorem 3.4: If «, is nondecreasing in t, then f,(g,n,i; X) is nondecreasing.
Proof: By Lemmas 3.6 and 3.7, we can derive the immediate result. O

~Recall Theorem 3.1 and recursion (2), f,(g,n,i;X)= f..(gni;X) and
A(g.ni; X)=A, (gniX) for all t>t", it is sure that we have the
optimal stationary policy over infinite horizon for all ¢ >¢". Qbviously, this
property is used to get the optimal initial decision without using the boundary
conditions. Meanwhile, we apply the following forecast horizon theorem to

obtain the same result. The algorithm for finding a forecast horizon is seen in
Hopp (1987) and Nair (1989).
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Theorem 3.5: If A,(g,n,i; X) is non-zero for all t, then there exists a T* such

that nf(g,h,i;X)=7zf'(g,n,i;X) forall T>T* and hence T=T *is a
forecast horizon.

Proof. Since f7(g,n.i;X)=f,(g,ni;X) as T—oo; for any & > 0, it is
possible to choose T* sufficiently large to make :

| & (g,n,i; X)- A,(g,n,i; X)|< & forall T2 T*

Hence, A (g,n,i;X) will have the same sign as 4,(g,n,i;X), ie, if
A,(g,n,i; X)>0, then = (g,n,i;X)=R and if A,(gni;X)<0, then
o (g,ni; X)=k, forallT> T* The theorem is established. O

VI. CONCLUSIONS VAND FURTHER STUDY

In this study, we have modeled the Markovian deterioration system with
new knowledge impact resulting in a single technological improvement for the
infinite horizon. We then derived the conditional probability distribution of
technology breakthrough by using the concept in shock model (Aven and
Gaarder (1987)). Under reasonable conditions, we have shown that the
conditional probability of technology breakthrough remains constant after
technology forecast period. This leads to the stationary optimal policy which
has a special control limit structure with two properties: when a system has
undergone beyond the control limit state, we have to undergo replacement
regardless of equipment age; when a system is below control limit state, the
control limit age is nonincreasing with respective to the deterioration state. It
means that for the maximal total expected discounted reward under
technological changes, the firms have to perform the equipment replacement
following the control limit state and age as a threshold for economical reasons.

We also show that the acceleration of technology breakthrough will result in
the increase of the optimal value function. Finally, we demonstrate that there
exists a minimal forecast horizon such that the initial action is optimal, regardless
of forecasts in later periods. It means that the forecast horizons are significant
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~ not only because they limit the computation and forecasting essential to arrive

at an optimal decision, but also because they ensure that the optimal decision
would be no different if relevant data for additional periods are forecasted.

In view of the management applications, this study points to the following
further research issues:

- To develop efficient algorithms for forecast horizon (see Sethi and
Chand (1979), Bean et al. (1985), Bes and Sethi (1988), Nair and Hopp
(1992)).

- To study the case of partially observable Markov decision processes. (see
Monahan (1982), White (1991)).

- To generalize the equipment replacement problem with —multiple
technologies and switching costs (see Bylka et al. (1992)).

- To analyze the optimal policy sensitivity on equipment procurement cost,
age, and conditional probability of technology breakthrough (see Hopp(1988),
Wu and Hou (1992)).

- To apply our model on the business operation under dynamic
environment where the innovation or adaptation decision is taken into
account.

In addition, a future study can be extended on system acquisition where the
make or buy decision is concerned.
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