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Abstract
This study adopts the unbounded-system distribution of the Johnson (1949) distribution 
family to approximate the basket/spread distribution and derive a versatile pricing 
model. This pricing model can price both basket and spread options, and thus, the risks 
of issuing both options can be consistently and efficiently integrated and managed. 
Furthermore, the pricing model can instantly price basket/spread options (almost as short 
in time as the Black-Scholes model (Black and Scholes, 1973)), and the results are quite 
accurate compared with the Monte Carlo simulation results. The method for computing 
Greeks is also presented. Finally, numerical examples are provided to demonstrate the 
implementation of the pricing model, and show the economic intuitions of Greeks for 
basket and spread options, and for an option portfolio consisting of both options.
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價差選擇權與一籃子選擇權之評價

摘 要

本研究採用 Johnson (1949) 分配族中的無邊界系統分配來近似一籃子 /價差標的資產
分配並推導出定價模型。該定價模型可以對一籃子選擇權和價差選擇權進行定價，因

此可以一致且有效地整合及管理發行這兩種選擇權的風險。又，該定價模型可以即時

對一籃子 /價差選擇權進行定價（時間幾乎與 Black-Scholes (Black and Scholes, 1973) 
評價模型一致），且與蒙地卡羅模擬的評價結果相比，顯示其定價結果相當準確。本

研究還介紹了計算 Greeks的方法。最後，數值範例展示定價模型的實作結果，並呈
現一籃子選擇權、價差選擇權及兩種選擇權組成的選擇權組合等商品 Greeks分別的
經濟直覺。

一籃子選擇權、價差選擇權、平賭過程評價方法【關鍵字】
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1. Introduction

A spread option is a financial contract on the price difference between several assets. 
The underlying assets may include stocks, stock indexes, interest rates, foreign exchange 
rates, or commodities. A variety of spread options are widely traded both on exchanges 
and in over-the-counter markets. Investors may use them to speculate or hedge the spread 
(correlation) risk. For example, in the agriculture market, soybean crush options traded on 
the Chicago Board of Trade are written on the price difference between raw soybean and 
two soybean products — namely soybean oil and soybean meal. They can be used to lock 
in the producer's profit.

In the energy market, crack spread options written on the price spread between 
crude oil and several refined products are traded on the New York Mercantile Exchange. 
Electricity spark spread options traded in the over-the-counter market can be used to hedge 
the profit of producing electricity with natural gas. As for hedging interest-rate risks, 
interest-rate spread options, such as Constant Maturity Swap rate (CMS) spread options, 
can be used to hedge the spread between long- and short-term interest rates. Credit spread 
options can be traded on the credit spread between two counterparties with different credit-
quality levels.1

After the collapse of the Bretton-Woods exchange rate system, the exchange rates 
between major currencies have become significantly volatile. Thus, managing currency 
risk becomes a vital issue, especially for multinational corporations involved in exporting 
and/or importing goods.2 For example, a globally-diversified corporation may generate 
receivables in some currencies by exporting products and payables in other currencies by 
importing materials or equipment. To manage the multi-currency exchange rate risks of 
assets (receivables) and liabilities (payables), treasurers may use currency spread options 
to neutralize currency risks.

1 For more information about the credit risk, the interest rate risk, and its related empirical studies, 
refer to Augustin, Sokolovski, Subrahmanyam, and Tomio (2022), Christensen, Kjær, and Veliyev 
(2023), Hasan, Marra, To, Wu, and Zhang (2023), Jaskowski and Rettl (2023), and Telg, Dubinova, 
and Lucas (2023).

2 Flood and Rose (1999) and Frömmel and Menkhoff (2003) indicate that the major floating exchange 
rates have become more and more volatile since 1973.
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A basket option is another popular exotic option written on the value of a basket 
(portfolio) of assets, and is actively traded both on exchanges and in over-the-counter 
markets. Basket options are traded mainly for investing and hedging a portfolio of assets, 
including stocks, stock indexes, currencies, and commodities. For example, if an investor 
expects that there is a booming energy market in the near future, they can buy call options 
on a basket of energy products, such as crude oil, natural gas, and their refined products. 
Another example is that if a company has receivables in various currencies and worries 
about adverse fluctuations of exchange rates that may reduce their domestic-currency 
value, the treasurer may buy a basket put option on relevant currencies to hedge this risk.

The challenge of pricing and hedging basket/spread options mainly stems from the 
lack of an explicit distribution of the sum/difference of correlated lognormal variates, and 
thus, their closed-form pricing formulas and hedge ratios cannot be derived. Therefore, 
to price basket/spread options, a variety of numerical methods and approximate pricing 
formulas have been developed and extensively used in the marketplace. For basket 
options, Levy (1992) approximates the underlying basket by the lognormal distribution 
and matches the first two moments with the distribution of the underlying basket. Gentle 
(1993) approximates the underlying basket by a geometric average, which relies on the fact 
that the geometric average of the lognormal distribution is also lognormally distributed. 
Milevsky and Posner (1998) apply the reciprocal gamma distribution and Posner and 
Milevsky (1998) use the shifted lognormal distribution to derive the approximate pricing 
formula of the basket options. Ju (2002) applies the Taylor expansion method; Flamouris 
and Giamouridis (2007) use the Edgeworth expansion method, and Bae, Kang, and Kim 
(2011) extend Ju's approximation (Ju, 2002) to derive the approximate pricing formula of 
the basket options. Kan (2017) extends Levy (1992) by modifying the moment matching 
approach to develop a Black-Scholes-type (Black and Scholes, 1973) formula. Moreover, 
Rogers and Shi (1995), Carmona and Durrleman (2005), Xu and Zheng (2009), and 
Caldana, Fusai, Gnoatto, and Grasselli (2016) derive the lower and upper price bounds of 
the basket options. Bayer, Siebenmorgen, and Tempone (2018) and Choi (2018) focus on 
the numerical quadrature integration technique that can ease the curse of dimensionality, 
and numerical pricing results show that the pricing method is accurate and efficient.

For spread options, Shimko (1994) approximates the two asset spread option prices 
by the expansion method provided by Jarrow and Rudd (1982). Kirk (1995) extended the 
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closed-form pricing formula for exchange options proposed by Margrabe in 1978 to derive 
an approximation pricing formula for two-asset spread options. Poitras (1998) uses the 
Bachelier approximation to approximate the price difference of the two assets directly as a 
normal variable and derives the pricing formula of spread options. Alexander and Scourse 
(2004) apply the bivariate normal mixture model to approximate the underlying spread 
and derive the approximate pricing formula. Li, Deng, and Zhou (2008) provide the price 
bounds for digital spread options and derive the approximate pricing formula of spread 
options using the quadratic approximation method. Hurd and Zhou (2010) introduce a new 
formula for spread options pricing based on Fourier analysis of the payoff function. Li, 
Zhou, and Deng (2010) provide a closed-form approximation method for pricing spread 
options using the extended Kirk’s approximation method (Kirk, 1995). Wu and Chen 
(2009, 2011) apply the lognormal approximation technique for pricing the interest rate and 
Constant Maturity Swap spread options. Besides, a more detailed and informed survey of 
the research on the valuation of European basket and spread options is provided by Lyden 
(1996), Carmona and Durrleman (2003), and Lin, Chung, and Yeh (2016).

In recent years, the subprime-loan turmoil and European debt crisis have made 
financial markets more volatile and many financial institutions incur credit events, 
which makes hedging risks an even more vital issue.3 Therefore, integrating the pricing 
and hedging models for various financial derivatives, and developing an efficient and 
consistent method for risk management have become important for academic and 
practitioner-oriented research. To integrate the pricing formulas of both basket and spread 
options, Borovkova, Permana, and van der Weide (2007) adopt the Lognormal-system (LS) 
distribution of the Johnson (1949) distribution family to approximate the (real) distribution 
of the basket/spread of assets, and then derive a versatile pricing formula which can 

3 For example, Chou, Chen, and Yang (2003) study the valuation of covered warrant with credit risk, 
Yeh and Yu (2015) employ the SABR-LMM (LIBOR Market Model) model proposed by Mercurio 
and Morini (2009) to price interest rate derivatives, and Lin, Chuang, and Fang (2021) explore and 
analyze the valuation and risk management of rainfall index. In addition, Lin et al. (2016) review 
the existing literature for pricing and hedging derivatives. Lin, Chung, and Yeh (2017) review and 
summarize the empirical studies of derivatives markets by conducting a survey with more than 140 
papers. All these studies reveal that risk management using derivatives has become an important task 
for academic researchers and market-practitioners.
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be used to price and hedge both options.4 For American basket and spread options, 
Borovkova, Permana, and van der Weide  (2012) develop an integrated pricing method via 
a binomial tree model.

Numerical examinations show that the BPW model (Borovkova et al., 2007) can 
accurately and efficiently price both basket and spread options in most cases, but its 
accuracy decreases gradually with increasing volatilities, decreasing correlations among 
underlying assets, and increasing time to maturity. This phenomenon can be explained 
by the fact that the LS distribution has only three flexible parameters to fit the target 
distribution. Thus, the BPW model (Borovkova et al., 2007) cannot well capture the high-
moment features of the target distribution and may cause some pricing error in some 
extreme situations.

This study aims to extend and improve the BPW model (Borovkova et al., 2007) 
by including the fourth parameter to approximate the target distribution. We adopt 
the unbounded-system (US) distribution of the Johnson (1949) distribution family to 
approximate the target distribution. The US distribution has four flexible parameters, 
which can help in better capturing the high-moment features of the target distribution even 
in the cases of high assetsʼ volatilities, low correlations among underlying assets, and 
long time to maturity. Therefore, our resulting pricing formula can price both spread and 
basket options more accurately in these extreme cases. Besides improving model accuracy, 
the resulting pricing model is also derived in a closed form; thus, this model remains 
computational efficiency. Moreover, their Greeks can also be derived analytically, which 
helps market practitioners manage risks efficiently for both basket and spread options.

The rest of this article is organized as follows. Section 2 presents the market model, 
and introduces the Johnson (1949) distribution family and their relevant properties. The 
pricing formulae and their Greeks within the US-distribution framework are derived 
in Section 3. Section 4 provides some numerical studies to demonstrate the model 
implementation and examine the accuracy of the resulting pricing model. The conclusions 
are presented in the last section.

4 Chang, Chen, and Wu (2012) provide the analytical solution for the equation system of the moment-
matching method presented in Borovkova et al. (2007).
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2. The Model and Johnson Distribution Family

This section first presents the model setup, and then introduces the Johnson (1949) 
distribution family and shows how it can be used to approximate the unknown distribution 
of a basket/spread of underlying assets. 

2.1 The Basket/Spread of Underlying Assets
Assume that trading takes place continuously over a time interval [ ], . 

The uncertainty is described by a filtered probability space , 
where the filtration is generated by the correlated standard Brownian motions denoted 

by , and their instantaneous correlations between  and 
, are denoted by . The measure Q represents the risk-neutral 

probability measure.
Consider N underlying assets whose dynamics under the risk-neutral probability 

measure Q are assumed to be the following stochastic differential equations:

where μi and σi represent the drift and diffusion terms, respectively.5 Their prices at time T 

conditional on time-0 information can be derived by using the Itȏ Lemma as follows:

Therefore, within the model setting, the time-T price of the underlying asset follows a 
lognormal distribution.

The model, presented by equation (1), can be straightforwardly generalized by 
including other risk factors, such as stochastic interest rates (e.g., Kijima and Muromachi, 
2001; Bernard, Le Courtois, and Quittard-Pinon, 2008; Wu and Chen, 2007a, 2007b), and 

5 The model can be easily applied to a variety of underlying assets by adjusting the setting of the drift 
terms. For example, if S stands for the foreign exchange rate, then μ = rd ─ rf, where rd and rf represent 
the domestic and foreign risk-free interest rates, respectively. If S denotes an equity index, then μ = rd 
─ q, where q represents the dividend yield rate. If S represents a forward or futures price, then μ =0, 
which is the same with the model setting specified in Borovkova et al. (2007). In addition, σi can be 
replaced by a time-varing process.
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price jumps (e.g., Merton, 1976; Metwally and Atiya, 2002; Flamouris and Giamouridis, 
2007; Ross and Ghamami, 2010). Within the framework of these two extended models, 
the time-T price of the underlying asset remains a lognormal distribution, and thus, their 
pricing methods for basket/spread options are similar to those derived within the model 
setting given in equation (1). Our purpose is to examine the performance of the Johnson 
(1949) distribution family, which is used to approximate the distribution of a basket/spread 
of underlying assets (or simply lognormal variates). Hence, to focus on the purpose of 
this study, we confine our model setting of the underlying assets to a geometric Brownian 
motion presented by equation (1).

2.2 The Basket/Spread of Underlying Assets
Since both a basket or spread of underlying assets can be expressed in the same form, 

we integrate them hereafter as a generalized basket (GB) defined as follows:

where αi∈R stands for the unit number of the ith asset. If , then the GB represents 
a basket of underlying assets; if , then the GB represents a spread. Though the 
exact distribution of the GB is unknown, its first four moments can be computed and are 
presented in the Preposition 1.

Proposition 1. The first four moments of the GB(T) are computed as follows:

where , and other notations are defined accordingly.
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unknown, its first four moments can be computed and are presented in the Preposition 1. 
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where 𝑎𝑎 is a location parameter, 𝑏𝑏 is a scale parameter, and 𝑐𝑐 and 𝑑𝑑 are shape parameters. The transformation of 
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Based on Proposition 1 and some statistical computation, the mean ( ), variance ( ), 
skewness ( ), and kurtosis ( ) of the GB(T) can be derived as follows:

These four characteristics can be exactly computed using present market data.

2.3 The Johnson Distribution Family
The Johnson (1949) distribution family is a collection of probability distributions, 

which are transformed from standard normal distributions via three types of functions with 
four parameters. Let Z stand for a standard normal distribution and X denote a Johnson 

distribution. The relation between Z and X is presented by:

where a is a location parameter, b is a scale parameter, and c and d are shape parameters. 
The transformation of a standard normal distribution, denoted by ϕ, falls into three types: 
a lognormal system, an unbounded system, and a bounded system, which are specifically 
presented as follows:

The probability density functions of each system can be derived and presented as 
follows.

Definition 1. Let X denote the Johnson distribution, and a, b, c, and d are the four 
parameters given in equation (8). The probability density functions of each system in the 
Johnson distribution family are given as follows:
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The probability density functions of each system can be derived and presented as follows. 
Definition 1. Let 𝑋𝑋 denote the Johnson distribution, and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are the four parameters given in equation 
(8). The probability density functions of each system in the Johnson distribution family are given as follows: 

(a) Lognormal System (LS) 

where (𝑥𝑥 𝑥 𝑎𝑎) 𝑏𝑏⁄ > 0,𝑥∞ < 𝑎𝑎 < ∞, |𝑏𝑏| = 1,𝑥∞ < 𝑐𝑐 < ∞, 𝑐𝑐𝑐𝑐𝑑𝑑 > 0𝑐 
(b) Unbounded System (US) 

where 𝑥∞ < 𝑥𝑥 < ∞,𝑥∞ < 𝑎𝑎 < ∞, 𝑏𝑏 > 0,𝑥∞ < 𝑐𝑐 < ∞, 𝑐𝑐𝑐𝑐𝑑𝑑 > 0𝑐 
(c) Bounded System (BS) 

where 𝑎𝑎 < 𝑥𝑥 < 𝑎𝑎 𝑎 𝑏𝑏,𝑥∞ < 𝑎𝑎 < ∞, 𝑏𝑏 > 0,𝑥∞ < 𝑐𝑐 < ∞, 𝑐𝑐𝑐𝑐𝑑𝑑 > 0𝑐 
The advantage of the Johnson distribution family lies in its rich pair of skewness and kurtosis. To express 

this feature more explicitly, we present Figure 1 with the vertical axis representing the kurtosis (𝒦𝒦)  and 
horizontal axis representing the square of skewness (𝒮𝒮𝒦𝒦�), and its coordinate is denoted by (𝒮𝒮𝒦𝒦�,𝒦𝒦). Figure 1 

represents all possible pairs of 𝒮𝒮𝒦𝒦� and 𝒦𝒦.6 For example, the standard normal distribution is known to have 
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(a) Lognormal System (LS)

(b) Unbounded System (US)

(c) Bounded System (BS)
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Definition 1. Let 𝑋𝑋 denote the Johnson distribution, and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are the four parameters given in equation 
(8). The probability density functions of each system in the Johnson distribution family are given as follows: 

(a) Lognormal System (LS) 

where (𝑥𝑥 𝑥 𝑎𝑎) 𝑏𝑏⁄ > 0,𝑥∞ < 𝑎𝑎 < ∞, |𝑏𝑏| = 1,𝑥∞ < 𝑐𝑐 < ∞, 𝑐𝑐𝑐𝑐𝑑𝑑 > 0𝑐 
(b) Unbounded System (US) 

where 𝑥∞ < 𝑥𝑥 < ∞,𝑥∞ < 𝑎𝑎 < ∞, 𝑏𝑏 > 0,𝑥∞ < 𝑐𝑐 < ∞, 𝑐𝑐𝑐𝑐𝑑𝑑 > 0𝑐 
(c) Bounded System (BS) 

where 𝑎𝑎 < 𝑥𝑥 < 𝑎𝑎 𝑎 𝑏𝑏,𝑥∞ < 𝑎𝑎 < ∞, 𝑏𝑏 > 0,𝑥∞ < 𝑐𝑐 < ∞, 𝑐𝑐𝑐𝑐𝑑𝑑 > 0𝑐 
The advantage of the Johnson distribution family lies in its rich pair of skewness and kurtosis. To express 

this feature more explicitly, we present Figure 1 with the vertical axis representing the kurtosis (𝒦𝒦)  and 
horizontal axis representing the square of skewness (𝒮𝒮𝒦𝒦�), and its coordinate is denoted by (𝒮𝒮𝒦𝒦�,𝒦𝒦). Figure 1 

represents all possible pairs of 𝒮𝒮𝒦𝒦� and 𝒦𝒦.6 For example, the standard normal distribution is known to have 
𝒮𝒮𝒦𝒦� = 0 and 𝒦𝒦 = 𝒦, which is located at (0, 𝒦) and displayed by a circle. 

The pair (𝒮𝒮𝒦𝒦�,𝒦𝒦) of the 𝑓𝑓 distribution is presented by a curve denoted by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�� . The upper area, 
denoted by 𝐴𝐴𝐶𝐶𝐶𝐶𝑎𝑎��, describes the pair (𝒮𝒮𝒦𝒦�,𝒦𝒦) which can be obtained from the US distribution. The middle 
area, denoted by 𝐴𝐴𝐶𝐶𝐶𝐶𝑎𝑎��, shows the pair (𝒮𝒮𝒦𝒦�,𝒦𝒦) which can be obtained by the BS distribution. The bottom 
area, denoted by Impossible Area, depicts the pair (𝒮𝒮𝒦𝒦�,𝒦𝒦)  which cannot be captured by the Johnson 
distribution family. Therefore, if the pair (𝒮𝒮𝒦𝒦�,𝒦𝒦) of the 𝐺𝐺𝐺𝐺 of underlying assets belongs to any one of the 
possible areas, then one of the Johnson distribution family can accurately approximate the target distribution by 
matching its first four moments. 

Most market data exhibit nonzero skewness and higher kurtosis. This also holds for the 𝐺𝐺𝐺𝐺, especially in 
the cases of higher volatilities, lower correlations among the underlying assets, and longer time to maturity. As 
shown in Figure 1, the distribution located in the 𝐴𝐴𝐶𝐶𝐶𝐶𝑎𝑎�� has relatively higher kurtosis than the distribution in 
the 𝐴𝐴𝐶𝐶𝐶𝐶𝑎𝑎�� . Thus, the US distribution is more capable of approximating the 𝐺𝐺𝐺𝐺  distribution. Empirical 
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matching its first four moments. 

Most market data exhibit nonzero skewness and higher kurtosis. This also holds for the 𝐺𝐺𝐺𝐺, especially in 
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Most market data exhibit nonzero skewness and higher kurtosis. This also holds 
for the GB, especially in the cases of higher volatilities, lower correlations among the 
underlying assets, and longer time to maturity. As shown in Figure 1, the distribution 
located in the AreaUS has relatively higher kurtosis than the distribution in the AreaBS. 
Thus, the US distribution is more capable of approximating the GB distribution. Empirical 
examinations with market data show that  located in the AreaBS may only occur 
in a very extreme and unreal situation.7 Therefore, this study does not adopt the BS 
distribution to fit the GB distribution.

Since the US distribution has one more flexible parameter than the LS distribution, 
CurveLS lies on the edge of AreaUS. Therefore, the US distribution is much more versatile 
and can fit the GB distribution better than the LS distribution. Nonetheless, Borovkova 
et al. (2007) adopt the LS distribution to approximate the GB distribution; consequently, 
their resulting model has limited capacity to capture a variety of real skewness and 
kurtosis. The aforementioned mismatch with the real skewness and kurtosis may cause 
some pricing error, especially in the cases of higher volatilities, lower correlations among 
underlying assets, and longer time to maturity. This phenomenon is illustrated by the 
examples presented in Figures 2 and 3, which show that the US distribution can fit the 
GB distribution better than the LS distribution. In addition, this study matches the first 
four moments of the four-parameter US distribution with the GB distribution. Thus, the 
US distribution can approximate the GB distribution.8 In summary, to enhance the pricing 
accuracy and retain computational efficiency, this study adopts the US distribution to 

approximate the GB distribution.

7 Thanks to the anonymous reviewers for the suggestions about the empirical examination of the BS 
distribution. Appendix A provides the pair of  of the GB distribution based on the numerical 
examinations from Tables 3 to 8.

8 Thanks to the anonymous reviewers for the suggestions about the theoretical foundation for the 
US distribution as an approximate distribution for the GB distribution. Based on the theoretical 
foundation of the Edgeworth series expansion method, matching the second or higher-order moments 
of both the underlying and approximating distributions shows that the underlying distribution can be 
approximated by the approximating distribution in terms of an Edgeworth series expansion. For more 
information, refer to Jarrow and Rudd (1982).
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We present the mean, variance, skewness, and kurtosis of the US distribution in the 
following proposition and their derivations in Appendix B.

Proposition 2. The four characteristics of the US distribution are presented as follows:

Figure 1  Pairs of 
Note: Figure 1 depicts the pair  that can be yielded by the US, LS, and BS distributions, 

respectively.
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We present the mean, variance, skewness, and kurtosis of the US distribution in the following proposition 
and their derivations in Appendix B. 
Proposition 2. The four characteristics of the US distribution are presented as follows: 

where Ω = 𝑐𝑐 𝑐𝑐⁄  and 𝜔𝜔 = 𝜔𝜔𝜔𝜔𝜔𝜔(1 𝑐𝑐�⁄ ). 
 

3. Pricing Formula of the GB options with the US Distribution 
This section first presents the procedure to find a matching US distribution to approximate the GB 

distribution using the moment-matching method, then derives the pricing formula for the GB options, and 
finally, show the computation of hedging Greeks. 
 

3.1. The Moment-Matching Method for the US Distribution 
As noted above, the challenge of pricing GB options mainly stems from the lack of an exact distribution of 

the GB; as a result, their pricing formulas can not be derived in precisely. To improve the BPW model 
(Borovkova et al., 2007), we adopt the US distribution family with the four correct characteristics presented in 
equations (4)-(7) to approximate the GB distribution. To choose a matching US distribution to approximate the 
GB distribution, we equalize the first four characteristics of the US distribution to those of the GB distribution, 
and obtain the following equation system: 

By solving this equation system and denoting the solution by �𝑎𝑎�, 𝑏𝑏�, 𝑐𝑐̅, �̅�𝑐�, we can determine a matching US 

distribution to approximate the GB distribution.9 
Because equation (16) is a nonlinear equation system, solving this equation is not straightforward and must 

resort to a numerical method. Tuenter (2001) proposes a root-finding algorithm built on the Newton-Raphson 

 
9 The moment-matching approach is also used for the pricing of Asian options, such as in Chang and Tsao (2011) and Lo, Palmer, and 
Yu (2014), and guaranteed minimum withdrawal benefits, such as in Milevsky and Salisbury (2006) and Yang, Wang, and Liu (2020). 
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Figure 2  Comparison between the US and LS Systems
Note: F igure 2 provides the real  d is t r ibut ion and two approximate d ist r ibut ions of 

 with . The volatilities (assumed by ), 
correlation, and time to maturity are presented in each plot.
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3. Pricing Formula of the GB Options with the US Distribution

This section first presents the procedure to find a matching US distribution to 
approximate the GB distribution using the moment-matching method, then derives the 
pricing formula for the GB options, and finally, show the computation of hedging Greeks.

3.1. The Moment-Matching Method for the US Distribution
As noted above, the challenge of pricing GB options mainly stems from the lack 

of an exact distribution of the GB; as a result, their pricing formulas can not be derived 
in precisely. To improve the BPW model (Borovkova et al., 2007), we adopt the US 
distribution family with the four correct characteristics presented in equations (4)-(7) to 
approximate the GB distribution. To choose a matching US distribution to approximate the 
GB distribution, we equalize the first four characteristics of the US distribution to those of 
the GB distribution, and obtain the following equation system:

By solving this equation system and denoting the solution by , we can 
determine a matching US distribution to approximate the GB distribution.9

Because equation (16) is a nonlinear equation system, solving this equation is 
not straightforward and must resort to a numerical method. Tuenter (2001) proposes a 
root-finding algorithm built on the Newton-Raphson method and shows the sufficient 
conditions for convergence. Therefore, we adopt the method proposed by Tuenter (2001) 
to solve equation (16), and arrange and reduce their results into the following three steps.
Step 1: Compute the initial value  as follows:

9 The moment-matching approach is also used for the pricing of Asian options, such as in Chang and 
Tsao (2011) and Lo, Palmer, and Yu (2014), and guaranteed minimum withdrawal benefits, such as in 
Milevsky and Salisbury (2006) and Yang, Wang, and Liu (2020).

11 
 

We present the mean, variance, skewness, and kurtosis of the US distribution in the following proposition 
and their derivations in Appendix B. 
Proposition 2. The four characteristics of the US distribution are presented as follows: 

where Ω = 𝑐𝑐 𝑐𝑐⁄  and 𝜔𝜔 = 𝜔𝜔𝜔𝜔𝜔𝜔(1 𝑐𝑐�⁄ ). 
 

3. Pricing Formula of the GB options with the US Distribution 
This section first presents the procedure to find a matching US distribution to approximate the GB 

distribution using the moment-matching method, then derives the pricing formula for the GB options, and 
finally, show the computation of hedging Greeks. 
 

3.1. The Moment-Matching Method for the US Distribution 
As noted above, the challenge of pricing GB options mainly stems from the lack of an exact distribution of 

the GB; as a result, their pricing formulas can not be derived in precisely. To improve the BPW model 
(Borovkova et al., 2007), we adopt the US distribution family with the four correct characteristics presented in 
equations (4)-(7) to approximate the GB distribution. To choose a matching US distribution to approximate the 
GB distribution, we equalize the first four characteristics of the US distribution to those of the GB distribution, 
and obtain the following equation system: 

By solving this equation system and denoting the solution by �𝑎𝑎�, 𝑏𝑏�, 𝑐𝑐̅, �̅�𝑐�, we can determine a matching US 

distribution to approximate the GB distribution.9 
Because equation (16) is a nonlinear equation system, solving this equation is not straightforward and must 

resort to a numerical method. Tuenter (2001) proposes a root-finding algorithm built on the Newton-Raphson 

 
9 The moment-matching approach is also used for the pricing of Asian options, such as in Chang and Tsao (2011) and Lo, Palmer, and 
Yu (2014), and guaranteed minimum withdrawal benefits, such as in Milevsky and Salisbury (2006) and Yang, Wang, and Liu (2020). 

 ℳ��(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑐𝑐) = 𝑎𝑎 𝑎 𝑏𝑏𝜔𝜔�
� sinh(Ω), (12)

 𝒱𝒱��(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑐𝑐) =
𝑏𝑏�
2 (𝜔𝜔 𝑎 1)(𝜔𝜔 cosh(2Ω) + 1), (13)

 
𝒮𝒮𝒮𝒮��(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑐𝑐) =

𝑎�𝜔𝜔(𝜔𝜔 𝑎 1)�𝜔𝜔(𝜔𝜔 + 2) sinh(3Ω) + 3 sinh(Ω)�
�2�𝜔𝜔 cosh(2Ω) + 1��

, (14)

 𝒮𝒮US(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑐𝑐)

= 𝜔𝜔2�𝜔𝜔4 + 2𝜔𝜔3 + 3𝜔𝜔2 𝑎 3� cosh(4Ω) + 4𝜔𝜔2(𝜔𝜔 + 2) cosh(2Ω) + 3(2𝜔𝜔+ 1)
2�𝜔𝜔 cosh(2Ω) + 1�2 , 

(15)

 ℳ��(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑐𝑐) = ℳ
𝒱𝒱��(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑐𝑐) = 𝒱𝒱
𝒮𝒮𝒮𝒮��(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑐𝑐) = 𝒮𝒮𝒮𝒮
𝒮𝒮��(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑐𝑐) = 𝒮𝒮

 (16)

.

12 
 

method and shows the sufficient conditions for convergence. Therefore, we adopt the method proposed by 
Tuenter (2001) to solve equation (16), and arrange and reduce their results into the following three steps. 

Step 1: Compute the initial value ω� as follows: 

Step 2: Set a tolerable error 𝜀𝜀 . If |𝜔𝜔� − 𝜔𝜔���| < 𝜀𝜀 , then 𝜔𝜔� = 𝜔𝜔� . Otherwise, continue the following 
iteration: 

   where 𝑖𝑖 = 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖, and 𝑚𝑚 = −𝑖 𝑚 �4 𝑚 𝑖�𝜔𝜔���
� − 𝒮𝒮��

����� ��������
�. 

Step 3: With 𝜔𝜔� computed in step 2, we can compute Ω�, 𝑚𝑚� , and the four parameters �𝑎𝑎�𝑖 𝑏𝑏�𝑖 𝑐𝑐̅𝑖 �̅�𝑑� as follows: 

    where 

    and ℳ, 𝒱𝒱, 𝒮𝒮𝒮𝒮, and 𝒮𝒮 can be computed by equations (4)-(7) based on current market data. 

The Newton-Raphson method can compute �𝑎𝑎�𝑖 𝑏𝑏�𝑖 𝑐𝑐̅𝑖 �̅�𝑑� in a fraction of a second, and then determine the 

matching US distribution to approximate the GB distribution. For the numerical examples presented in Section 
0, the Newton-Raphson method converges within five iterations by taking approximately 𝑖 × 𝑖0�� seconds. 
Thus, it ensures that the resulting pricing formulas can be instantly computed. 
 

3.2. Pricing Formula of the Basket/Spread Options with the US Distribution 
Basket/Spread options are financial contracts on the basket/spread of multiple underlying assets whose final 

payoffs can be jointly defined as follows: 

 
ω� = �√𝑖𝒮𝒮 − 𝑖 − 𝑖𝑖  
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(22)
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Step 3: With  computed in step 2, we can compute , , and the four parameters 
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then determine the matching US distribution to approximate the GB distribution. For the 
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five iterations by taking approximately 2×10-5 seconds. Thus, it ensures that the resulting 
pricing formulas can be instantly computed.
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3.2. Pricing Formula of the Basket/Spread Options with the US Distribution
Basket/Spread options are financial contracts on the basket/spread of multiple 

underlying assets whose final payoffs can be jointly defined as follows:

where K represents the strike price, and GBC and GBP denote the call and put options on 
the GB, respectively. The generalized basket (GB) is defined as follows:

where  represents the unit number of the ith asset. If , then the GB 
represents a basket of underlying assets; if , then the GB represents a spread.

Based on the martingale pricing method, the pricing formulas of the GB options can 
be derived by computing the following expectations:

However, as mentioned above, the distribution of the GB(T) is unknown, resulting 
in the above expectations cannot be analytically derived. Instead, the US distribution is 
employed to approximate the GB distribution and then to derive the approximate pricing 
formula of the GB option. Once the matching US distribution is obtained following the 
procedure outlined in section 3.1, the approximate pricing formulas of the GB options can 

be derived and presented as follows. The derivation is presented in Appendix C.

Theorem 1. The pricing formulae of the GB call and put options are as follows:
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where  is defined in equation (4), , , and  and 
 are given in equations (17)-(20).

With inheriting from the merits of the BPW model (Borovkova et al., 2007), the 
derived pricing models given in equations (27) and (28) can together price both basket 
and spread options, and thus, the pricing and hedging of the two options can be managed 
consistently and efficiently. Furthermore, the pricing models improve the pricing capacity 
of the BPW model (Borovkova et al., 2007) by incorporating one more flexible parameter, 
which can capture the features of the first four moments of the GB distribution. Therefore, 
the resulting pricing models can significantly reduce the pricing error, especially in the 
situations of higher asset volatilities, lower correlations among underlying asset prices, 
and a longer time to maturity.

3.3 Hedging Ratio
Hedging the GB options is as important as pricing them for investment banks. 

Therefore, this subsection examines how to compute the hedging ratios (or the Greeks) 
of the GB options. Note that though the pricing formulas given in equations (27) and (28) 

are presented in a close form, their Greeks cannot be analytically derived because  
and  must be computed via the Newton-Raphson method. To overcome this obstacle, 
this subsection suggests that the end-users should compute the Greeks directly by their 
definitions. For demonstration, the definitions of Greeks are presented as follows.

Definition 2. The Greeks of the GB options can be approximately computed by the 
following formulas:
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where δ is a sufficiently small number and the other parameters are fixed as a constant in 
the computation of each Greek.

Based on the pricing formulas presented in Theorem 1, the approximate Greeks of the 
GB options can be instantly and accurately computed via the above Greeks computation 
method.10 The accuracy depends on the size of δ we choose; that is, the smaller the size of 
δ, the more accurate the computed Greeks. Note that the size of chosen δ will not affect 
the computation time; accordingly, the above Greek formulas can also be viewed as close-
form formulas. As a rule of thumb, we may set δ = 10-5 (or even smaller) for each case, 
which can uniformly yield sufficiently accurate Greeks.

4. Numerical Studies

This section provides some numerical examples to examine the accuracy of the 
resulting pricing models and then presents some sensitivity analysis for the Greeks.

10 It is not unreasonable to view the computation of Greeks as a (quasi-) closed-form model since their 
solutions generally converges within five iterations with the Newton-Raphson method. For computing 
each option value, the presented pricing formula takes approximately 2.33×10-4 of a second, which 
is almost the same as the 1.6×10-4 taken by the Black and Scholes (1973) formula.
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4.1 Numerical Examinations
Borovkova et al. (2007) adopt the LS distribution of the Johnson distribution family 

to derive a versatile pricing formula which can accurately and efficiently price both the 
basket options and spread options. However, our numerical examination below reveals that 
the BPW model (Borovkova et al., 2007) yields relatively higher pricing errors in cases 
of higher asset volatilities, lower correlations among underlying assets, and longer time 
to maturity. To improve the pricing capability, this study adopts the US distribution of the 
Johnson distribution family to approximate the GB distribution.

To examine the accuracy of our model, we first employ the numerical examples 
provided in Borovkova et al. (2007) and compare the results computed via the BPW 
model (Borovkova et al., 2007) and our pricing model. Table 1 presents the market 
scenarios provided in Borovkova et al. (2007), and the pricing results are given in Table 2. 
Clearly, our model yields almost the same prices as those computed from the Monte Carlo 
simulation, while the BPW method (Borovkova et al., 2007) shows slight deviations from 
the Monte Carlo simulation.

Note that the six market scenarios provided in Borovkova et al. (2007) are composed 
of low volatilities and high correlations among the underlying assets, and short time to 
maturity. Under these conditions, the BPW approximate pricing formulas (Borovkova et 
al., 2007) easily perform well. However, our pricing formulas can accurately price the GB 
options even in difficult situations, such as high volatilities and low correlations among 
the underlying assets, and longer time to maturity. To support our claim, we provide more 
comprehensive numerical examples and show that our model can deal with these difficult 
situations better than the BPW model (Borovkova et al., 2007). The results are presented 
in Tables 3, 4, 5, 6, 7, and 8.

Lo et al. (2014) adopt a shifted reciprocal gamma distribution to approximate the 
distribution of the sum of lognormal variates. Therefore, this study also uses the same 
approximation method to derive the pricing formulas of the general basket options and 
their pricing results are also presented in Tables 3, 4, 5, 6, 7, and 8.

To evaluate the performance of each model by comparing it with the result computed 
based on the Monte Carlo simulation method, we provide the percentage pricing error 
(PPE), root of mean squared error (RMSE), and maximum absolute error (MAE), which 
are computed as follows:
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where Pi,j means the ith price of model j and j                          . Pi,MC means the ith price of 
the Monte Carlo method. For ease of reading, the PPE of each case greater than 10% will 
be marked by ***; between 5% and 10% by **; and between 1% and 5% by *. No asterisk 
means that the PPE is lower than 1%.

As shown clearly in Tables 3, 4, 5, 6, 7, and 8, our pricing model (denoted by USD) 
produces the prices almost identical to those computed with the Monte Carlo simulation 
even in difficult situations. In contrast, the SLN and SRG models produce prices close to 
those computed with Monte Carlo simulation in normal cases; however, their performance 
deteriorates significantly in difficult situations. Therefore, the numerical examination 
indicates that our pricing model can more robustly and accurately price both spread and 
basket options than the SLN and SRG models.

Regarding the computation efficiency, the resulting pricing formulas can price basket 
and spread options in a very small fraction of a second even though the parameters of the 
formulas should be computed via the Newton-Raphson method. For each option presented 
in Tables 3, 4, 5, 6, 7, and 8, the Newton-Raphson method converges within five iterations, 
taking approximately 2×10-5 of a second. In addition, the computation time of our pricing 
formulas for each option is approximately 2.33×10-4, which is almost the same as 1.6×10-4 
taken by the BS formula (Black and Scholes, 1973). This shows that our pricing model 
can instantly price basket and spread options, and thus, it justifies the use of Definition 2 
to compute the Greeks via their definitions.

4.2. Numerical Examples with Market Data
In this section, we present some numerical examples using market data and illustrate 

how to estimate the parameter. To make the pricing results more readable and comparable, 
we select three representative companies from three different industries: Taiwan 
Semiconductor Manufacturing Co., Ltd. (2330), Evergreen Marine Corporation (2603), 
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Table 1 The GB Parameters of Each Numerical Example Provided in Borovkova 
et al. (2007)

Terms GB1 GB2 GB3 GB4 GB5 GB6
Si(0) [100, 120] [150, 100] [110, 90] [200, 50] [95, 90, 105] [100, 90, 95]

σi [0.2, 0.3] [0.3, 0.2] [0.3, 0.2] [0.1, 0.15] [0.2, 0.3, 0.25] [0.25, 0.3, 0.2]
αi [-1, 1] [-1, 1] [0.7, 0.3] [-1, 1] [1, -0.8, -0.5] [0.6, 0.8, -1]

ρi,j ρ1,2 = 0.9 ρ1,2 = 0.3 ρ1,2 = 0.9 ρ1,2 = 0.8 ρ1,2 = ρ2,3 = 0.8
ρ1,3 = 0.8

ρ1,2 = ρ2,3 = 0.8
ρ1,3 = 0.8

K 20 -50 104 -140 -30 35
T 1 1 1 1 1 1

Note:  The notations are defined as follows: Si(0): the initial asset price; σi: volatility; αi: units of the ith 
asset; ρi,j: correlation coefficient between Si and Sj; K: strike price. The dividend yield rates of 
all assets are assumed to be zero, namely, qi = 0 and the risk-free interest rate, r, is assumed 
to be 0.03.

Table 2 The Numerical Examples of GB Options Provided in Borovkova et al. 
(2007)

Method GB1 GB2 GB3 GB4 GB5 GB6
USD 7.739 16.767 10.824 1.958 7.740 9.009
BPW 7.751 16.910 10.844 1.958 7.759 9.026
MC 7.744 16.757 10.821 1.966 7.730 9.012
se 0.014 0.023 0.018 0.005 0.010 0.015

Note: This table presents the pricing results of various GB options computed by three different 
approaches: USD represents the pricing model proposed in this article, BPW represents 
the pricing model presented in Borovkova et al. (2007), and MC denotes the Monte Carlo 
simulation method. The standard error of Monte Carlo simulation is denoted by se.

and Cathay Financial Holdings Co., Ltd. (2882). The market data of the representative 
companies include the stock price and dividend yield within the period from January 1, 
2020, to August 31, 2022, and all data are from the Taiwan Economic Journal.

Assume that the valuation date is August 1, 2022; then, the initial stock of each 
company is S2330 (0) = 505, S2603 (0) = 88.3, and S2882 (0) = 44.55. The average yield of 
each company during this time period is q2330 = 2.1%, q2603 = 3.5%, and q2882 = 4.8%. The 
strike price is assumed to be in-the-money. The historical volatility of each company is 
computed by the annualized standard deviation of stock return, which are σ2330 = 27.4%, 
σ2603 = 65.8%, and σ2882 = 24.1%, respectively. The historical correlation coefficient 
between companies is calculated by the Pearson's correlation method, which are ρ2330,2882 = 
45.1%, ρ2603,2882 = 34.0%, and ρ2330,2603 = 17.1%, respectively. The risk-free interest rate, r, 
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is assumed to be 1.5%. The weight of each company makes the underlying general basket 
belong to the basket options if all weights are positive, including GB1, GB2, and GB4, and 
belong to the spread options if some weights are negative, including GB3, GB5, and GB6. 
All parameters are summarized in Table 9.

Table 10 presents the pricing results of various GB computed by three different 
pricing methods: USD represents the pricing model based on the unbounded system of the 
Johnson distribution family, SLN represents the pricing model developed by Borovkova 
et al. (2007), and MC denotes the Monte Carlo simulation method based on 100,000 
simulation paths with the variance reduction technique named the antithetic variates 
method. The standard error of the Monte Carlo simulation method is denoted by “se”. All 
pricing results show that our pricing model can accurately price both the basket and spread 
options based on the market data.

4.3. Sensitivity Analysis
Since basket and spread options do not have close-form pricing models, their 

pricing models in the early literature are developed independently under various model 
assumptions. This may lead to inconsistency, and cause pricing and hedging errors between 
basket and spread options. However, our pricing model can price both basket and spread 
options, and thus, it can eliminate the pricing errors. In addition, the Greeks of basket and 
spread options are derived from the same pricing formulas; in consequence their Greek 
risks can be integrated to help traders manage and hedge their option portfolios.

As indicated by Figures 4, 5, and 6, the correlation coefficient ρ substantially affects 
the Greeks of both basket and spread options. The humped-shape figure of the correlation 
vega shows that ρ positively affects the basket-option value, which decreases with increasing 
ρ. On the contrary, ρ negatively affects the spread-option value, which increases with 
decreasing ρ. The behavior of vega (υ) and delta (Δ) of an asset is affected by ρ, moneyness, 
and the (long or short) position of the asset. These Greeks can help financial institutions 
construct hedging strategies to manage the risks of issuing basket/spread options.

Next, we present some numerical examples to demonstrate the sensitivity analysis 
of basket and spread options based on the Greek formulas provided in Definition 2. To 
save space, we only show the delta (Δ), vega (υ), and correlation vega of both options in 
Figures 4, 5, and 6. Other Greeks can also be easily examined by using Definition 2. For 
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Table 9  The GB Parameters of Each Numerical Example with Market Data
Terms GB1 GB2 GB3 GB4 GB5 GB6

Stock ID [2330, 2882] [2603, 2882] [2330, 2603] [2330, 2603, 2882]
Si (0) [505, 44.55] [88.3, 44.55] [505, 88.3] [505, 88.3, 44.55]

σi [0.274, 0.241] [0.658, 0.241] [0.274, 0.658] [0.274, 0.658, 0.241]
αi [1, 1] [1, 1] [1, -1] [1, 1, 1] [1, -1, 1] [1, -1, -1]
qi [0.021, 0.048] [0.035, 0.048] [0.021, 0.035] [0.021, 0.035, 0.048]
ρi,j ρ1,2 = 0.451 ρ1,2 = 0.340 ρ1,2 = 0.171 ρ1,2 = 0.171, ρ1,3 = 0.451, ρ2,3 = 0.340,
K 549.55 132.85 593.3 637.85 461.25 372.15

Note: The notations are defined as follows: Si (0): the initial asset price; σi: volatility; αi: units of the 
ith asset; qi: dividend yield rate; ρi,j: correlation coefficient between Si and Sj; K: strike price. 
The time to maturity, T, is assumed to be 1. The risk-free interest rate, r, is assumed to be 
0.015.

Table 10  The GB Parameters of Each Numerical Example with Market Data
Methods GB1 GB2 GB3 GB4 GB5 GB6

USD 54.094 22.445 54.584 61.910 55.368 54.086
SLN 54.155 23.540 55.977 62.246 56.615 55.631
MC 54.077 22.487 54.543 62.122 55.327 54.079
se 0.213 0.114 0.207 0.247 0.212 0.204

Note: This table presents the pricing results of various GB options computed by three different 
approaches: USD represents the pricing model proposed in this article, SLN represents 
the pricing model presented in Borovkova et al. (2007), and MC denotes the Monte Carlo 
simulation method. The standard error of Monte Carlo simulation is denoted by se.

simplicity, we assume that both basket and spread options are composed of two assets, and 
their parameters are given in the footnotes of Figures 4, 5, and 6.

Figure 6 provides numerical examples, which show the Greeks of an option portfolio 
composed of a long position in a basket option on GB7 and a short position in a spread 
option on GB8 with the same parameters defined in the footnotes of Figures 4 and 5. 
Notably, the patterns of the Greeks of the option portfolio are totally different from those 
of a single basket or spread option, and are not easily understood simply via economic 
intuitions. This fact reveals the importance of our pricing model for integrating the Greek 
risks of both options, which enhances hedging efficiency and reduces the cost for hedging 
option portfolios.
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Figure 4  Greeks of Basket Options
Note: The basket is defined by GB7 = S1+S2, and the other parameters are defined as follows: S1 (0) 

= 150, S2 (0) = 50, σ1 = σ2 = 0.4, K = 200, r = 0.05, and T = 1.

Figure 5  Greeks of Spread Options
Note: The spread is defined by GB8 = S1─S2, and the other parameters are defined as follows: S1 (0) 

= 150, S2 (0) = 50, σ1 = σ2 = 0.4, K = 200, r = 0.05, and T = 1.

Figure 6  Greeks of an Option Portfolio
Note: The option portfolio is composed of a long position in a basket option by GB7 and a short 

position in a spread option on GB8 with parameters defined in Figures 4 and 5.
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5. Conclusion

This study adopts the unbounded-system distribution of the Johnson (1949) 
distribution family to approximate the basket/spread distribution, and derive a united 
pricing model for both basket and spread options. Our proposed pricing model can 
accurately and instantly price both basket and spread options even in difficult situations, 
where option maturity is longer and underlying assets exhibit high volatilities and low 
correlation. Besides the pricing advantage, the Greeks derived from our pricing formulas 
help financial institutions efficiently integrate and manage the risks of issuing both basket 
and spread options. Therefore, our pricing model can reduce pricing errors, enhance 
hedging efficiency; thus lower the hedging cost of both basket and spread options. Based 
on the aforementioned merits, the resulting pricing formulas provide market practitioners 
with an accurate, efficient and time-saving approach for offering almost instantly-
quoted prices to clients and the daily marking-to-market trading books, and facilitating 
efficient risk management of trading positions. Thus, the presented formulas are worth 
recommending to market practitioners.11

11 This study adopts a geometric Brownian motion to specify the dynamics of the prices of the 
underlying assets. Future research can employ the stochastic volatility model or a jump diffusion 
process to specify these dynamics.
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Figure 7  The pair of (SK2, K) of the GB Distribution

Appendix A. The Pairs of (SK2, K) of the GB Distribution 

Based on the parameters we used from Tables 3 to 8, the pair of (SK2, K) of 
the GB distribution can be computed by Proposition 1 and equations (1) to (4). All 
numerical results are shown in Figure 7.

Appendix B. Proof of Proposition 2

Based on the definition in equation (8), X = a + bY, and                           where 
Z is a standard normal random variable, a ∈ R, b > 0, c ∈ R, and d > 0. The four 
characteristics of the US distribution given in Proposition 2 can be obtained by the 
following derivations.

Y = sinh          ,z - c
d(     )
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Appendix B. Proof of Proposition 2 
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2�𝜔𝜔 cosh(2Ω) + 𝜔�� 𝑎 

 

 𝐸𝐸(𝑌𝑌�) 𝑋 4𝐸𝐸(𝑌𝑌�)𝐸𝐸(𝑌𝑌) + 6𝐸𝐸(𝑌𝑌�)𝐸𝐸�(𝑌𝑌) 𝑋 3𝐸𝐸�(𝑌𝑌) 

= 𝜔
8𝜔𝜔

�cosh(4Ω) 𝑋 𝜔
2𝜔𝜔

�cosh(2Ω) + 3
8 𝑋 𝜔𝜔�sinh(3Ω)sinh(Ω) + 3𝜔𝜔sinh�(Ω)

+ 3𝜔𝜔�sinh�(Ω)cosh(2Ω) 𝑋 3𝜔𝜔sinh�(Ω) 𝑋 3𝜔𝜔�sinh�(Ω) 

= 𝜔
8𝜔𝜔

�cosh(4Ω) 𝑋 𝜔
2𝜔𝜔

�cosh(2Ω) + 3
8 𝑋

𝜔
2𝜔𝜔

�cosh(4Ω) + 𝜔
2𝜔𝜔

�cosh(2Ω)

+ 3
2𝜔𝜔cosh(2Ω) 𝑋

3
2𝜔𝜔 𝑋 3

4𝜔𝜔
�cosh(4Ω) 𝑋 3

2𝜔𝜔
�cosh(2Ω) + 3

4𝜔𝜔
�

𝑋 3
2𝜔𝜔cosh(2Ω) +

3
2𝜔𝜔 𝑋 3

8𝜔𝜔
�cosh(4Ω) + 3

2𝜔𝜔
�cosh(2Ω) 𝑋 9

8𝜔𝜔
� 

= 𝜔
8𝜔𝜔

�cosh(4Ω)(𝜔𝜔� 𝑋 4𝜔𝜔� + 6𝜔𝜔 𝑋 3) + 𝜔
2𝜔𝜔

�cosh(2Ω)(𝜔𝜔� 𝑋 3𝜔𝜔 + 2)

+ 3
8 (2𝜔𝜔

� 𝑋 3𝜔𝜔� + 𝜔) 

= 𝜔
8 (𝜔𝜔 𝑋 𝜔)��𝜔𝜔�(𝜔𝜔� + 2𝜔𝜔� + 3𝜔𝜔� 𝑋 3) cosh(4Ω) + 4𝜔𝜔�(𝜔𝜔 + 2) cosh(2Ω)

+ 3(2𝜔𝜔 + 𝜔)�𝑎 

 

 sinh�(Ω) = 𝜔
2 �cosh(2Ω) 𝑋 𝜔�𝑎  

 sinh�(Ω) = 𝜔
8 �cosh(4Ω) 𝑋 4cosh(2Ω) + 3�𝑎  

 sinh(3Ω)sinh(Ω) = 𝜔
2 �cosh(4Ω) 𝑋 cosh(2Ω)�𝑎  

 sinh�(Ω)cosh(2Ω) = 𝜔
4 �cosh(4Ω) 𝑋 2cosh(2Ω) + 𝜔�𝑎  

 E(𝑌𝑌�) = E ��𝜔2 exp �
𝑍𝑍 𝑋 𝑎𝑎
𝑎𝑎 � 𝑋 𝜔

2 exp �𝑋
𝑍𝑍 𝑋 𝑎𝑎
𝑎𝑎 ��

�
�  
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 The skewness of 𝑋𝑋 (𝒮𝒮𝒮𝒮��(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎)) 

where the numerator part of the skewness is 

where 

and 

Ω = 𝑎𝑎 𝑎𝑎⁄ , and 𝜔𝜔 = 𝜔𝜔𝜔(1 𝑎𝑎�⁄ ). 
 
 

 
𝒮𝒮𝒮𝒮��(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎) =

𝐸𝐸�𝑋𝑋 𝑋 𝐸𝐸(𝑋𝑋)��

�V(𝑋𝑋)���
 

= 𝐸𝐸(𝑌𝑌�) 𝑋 3𝐸𝐸(𝑌𝑌�)𝐸𝐸(𝑌𝑌) + 2𝐸𝐸�(𝑌𝑌)
�V(𝑌𝑌)���

 

= 𝑋�𝜔𝜔(𝜔𝜔 𝑋 1)�𝜔𝜔(𝜔𝜔 + 2) sinh(3Ω) + 3 sinh(Ω)�
�2�𝜔𝜔 cosh(2Ω) + 1��

𝑎 

 

 E(𝑌𝑌�) 𝑋 3E(𝑌𝑌�)E(𝑌𝑌) + 2𝐸𝐸�(𝑌𝑌) 

= 𝑋1
4 𝜔𝜔�

�sinh(3Ω) + 3
4𝜔𝜔

�
�sinh(Ω) + 3

2 (𝜔𝜔
�cosh(2Ω) 𝑋 1) �𝜔𝜔�

�sinh(Ω)�

𝑋 2𝜔𝜔�
�sinh�(Ω) 

= 3
4𝜔𝜔

�
�sinh(Ω) 𝑋 1

4𝜔𝜔
�
�sinh(3Ω) + 3

4𝜔𝜔
�
�sinh(3Ω) 𝑋 3

4𝜔𝜔
�
�sinh(Ω) 𝑋 3

2𝜔𝜔
�
�sinh(Ω)

𝑋 1
2𝜔𝜔

�
�sinh(3Ω) + 3

2𝜔𝜔
�
�sinh(Ω) 

= 𝑋14 sinh(3Ω)𝜔𝜔
�
�(𝜔𝜔� 𝑋 3𝜔𝜔 + 2) 𝑋 3

4 sinh(Ω)𝜔𝜔
�
�(𝜔𝜔� 𝑋 2𝜔𝜔 𝑋 1) 

= 𝑋14𝜔𝜔
�
�(𝜔𝜔 𝑋 1)��𝜔𝜔(𝜔𝜔 + 2)sinh(3Ω) + 3sinh(Ω)�𝑎 

 

 sinh�(Ω) = 1
4 �sinh(3Ω) 𝑋 3sinh(Ω)�𝑎  

 sinh(Ω)cosh(2Ω) = 1
2 �sinh(3Ω) 𝑋 sinh(Ω)�𝑎  

 E(𝑌𝑌�) = E ��12 𝜔𝜔𝜔 �
𝑍𝑍 𝑋 𝑎𝑎
𝑎𝑎 � 𝑋 1

2 𝜔𝜔𝜔 �𝑋
𝑍𝑍 𝑋 𝑎𝑎
𝑎𝑎 ��

�
� 

= 1
8 𝜔𝜔𝜔 �

𝑋3𝑎𝑎
𝑎𝑎 �E �𝜔𝜔𝜔 �3𝑍𝑍𝑎𝑎 �� 𝑋

3
8 𝜔𝜔𝜔 �

𝑋𝑎𝑎
𝑎𝑎 � E �𝜔𝜔𝜔 �

𝑍𝑍
𝑎𝑎�� +

3
8 𝜔𝜔𝜔 �

𝑎𝑎
𝑎𝑎� E �𝜔𝜔𝜔 �

𝑋𝑍𝑍
𝑎𝑎 ��

𝑋 1
8 𝜔𝜔𝜔 �

3𝑎𝑎
𝑎𝑎 � E �𝜔𝜔𝜔 �

𝑋3𝑍𝑍
𝑎𝑎 �� 

= 1
8 𝑒𝑒

���𝜔𝜔�
� 𝑋 3

8 𝑒𝑒
��𝜔𝜔�

� + 3
8 𝑒𝑒

�𝜔𝜔�
� 𝑋 1

8 𝑒𝑒
��𝜔𝜔�

� 

= 𝑋1
4 𝜔𝜔�

�sinh(3Ω) + 3
4𝜔𝜔

�
�sinh(Ω)𝑎 
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 The skewness of 𝑋𝑋 (𝒮𝒮𝒮𝒮��(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎)) 

where the numerator part of the skewness is 

where 

and 

Ω = 𝑎𝑎 𝑎𝑎⁄ , and 𝜔𝜔 = 𝜔𝜔𝜔(1 𝑎𝑎�⁄ ). 
 
 

 
𝒮𝒮𝒮𝒮��(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎) =

𝐸𝐸�𝑋𝑋 𝑋 𝐸𝐸(𝑋𝑋)��

�V(𝑋𝑋)���
 

= 𝐸𝐸(𝑌𝑌�) 𝑋 3𝐸𝐸(𝑌𝑌�)𝐸𝐸(𝑌𝑌) + 2𝐸𝐸�(𝑌𝑌)
�V(𝑌𝑌)���

 

= 𝑋�𝜔𝜔(𝜔𝜔 𝑋 1)�𝜔𝜔(𝜔𝜔 + 2) sinh(3Ω) + 3 sinh(Ω)�
�2�𝜔𝜔 cosh(2Ω) + 1��

𝑎 

 

 E(𝑌𝑌�) 𝑋 3E(𝑌𝑌�)E(𝑌𝑌) + 2𝐸𝐸�(𝑌𝑌) 

= 𝑋1
4 𝜔𝜔�

�sinh(3Ω) + 3
4𝜔𝜔

�
�sinh(Ω) + 3

2 (𝜔𝜔
�cosh(2Ω) 𝑋 1) �𝜔𝜔�

�sinh(Ω)�

𝑋 2𝜔𝜔�
�sinh�(Ω) 

= 3
4𝜔𝜔

�
�sinh(Ω) 𝑋 1

4𝜔𝜔
�
�sinh(3Ω) + 3

4𝜔𝜔
�
�sinh(3Ω) 𝑋 3

4𝜔𝜔
�
�sinh(Ω) 𝑋 3

2𝜔𝜔
�
�sinh(Ω)

𝑋 1
2𝜔𝜔

�
�sinh(3Ω) + 3

2𝜔𝜔
�
�sinh(Ω) 

= 𝑋14 sinh(3Ω)𝜔𝜔
�
�(𝜔𝜔� 𝑋 3𝜔𝜔 + 2) 𝑋 3

4 sinh(Ω)𝜔𝜔
�
�(𝜔𝜔� 𝑋 2𝜔𝜔 𝑋 1) 

= 𝑋14𝜔𝜔
�
�(𝜔𝜔 𝑋 1)��𝜔𝜔(𝜔𝜔 + 2)sinh(3Ω) + 3sinh(Ω)�𝑎 

 

 sinh�(Ω) = 1
4 �sinh(3Ω) 𝑋 3sinh(Ω)�𝑎  

 sinh(Ω)cosh(2Ω) = 1
2 �sinh(3Ω) 𝑋 sinh(Ω)�𝑎  

 E(𝑌𝑌�) = E ��12 𝜔𝜔𝜔 �
𝑍𝑍 𝑋 𝑎𝑎
𝑎𝑎 � 𝑋 1

2 𝜔𝜔𝜔 �𝑋
𝑍𝑍 𝑋 𝑎𝑎
𝑎𝑎 ��

�
� 

= 1
8 𝜔𝜔𝜔 �

𝑋3𝑎𝑎
𝑎𝑎 �E �𝜔𝜔𝜔 �3𝑍𝑍𝑎𝑎 �� 𝑋

3
8 𝜔𝜔𝜔 �

𝑋𝑎𝑎
𝑎𝑎 � E �𝜔𝜔𝜔 �

𝑍𝑍
𝑎𝑎�� +

3
8 𝜔𝜔𝜔 �

𝑎𝑎
𝑎𝑎� E �𝜔𝜔𝜔 �

𝑋𝑍𝑍
𝑎𝑎 ��

𝑋 1
8 𝜔𝜔𝜔 �

3𝑎𝑎
𝑎𝑎 � E �𝜔𝜔𝜔 �

𝑋3𝑍𝑍
𝑎𝑎 �� 

= 1
8 𝑒𝑒

���𝜔𝜔�
� 𝑋 3

8 𝑒𝑒
��𝜔𝜔�

� + 3
8 𝑒𝑒

�𝜔𝜔�
� 𝑋 1

8 𝑒𝑒
��𝜔𝜔�

� 

= 𝑋1
4 𝜔𝜔�

�sinh(3Ω) + 3
4𝜔𝜔

�
�sinh(Ω)𝑎 

 

,

,
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 The kurtosis of 𝑋𝑋 (𝒦𝒦��(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎)) 

where the numerator part of the skewness is 

where 

and 

 
𝒦𝒦��(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎) =

𝐸𝐸�𝑋𝑋 𝑋 𝐸𝐸(𝑋𝑋)��
�V(𝑋𝑋)��  

= 𝐸𝐸(𝑌𝑌�) 𝑋 4𝐸𝐸(𝑌𝑌�)𝐸𝐸(𝑌𝑌) + 6𝐸𝐸(𝑌𝑌�)𝐸𝐸�(𝑌𝑌) 𝑋 3𝐸𝐸�(𝑌𝑌)
�V(𝑌𝑌)���

 

= 𝜔𝜔�(𝜔𝜔� + 2𝜔𝜔� + 3𝜔𝜔� 𝑋 3) cosh(4Ω) + 4𝜔𝜔�(𝜔𝜔 + 2) cosh(2Ω) + 3(2𝜔𝜔 + 𝜔)
2�𝜔𝜔 cosh(2Ω) + 𝜔�� 𝑎 

 

 𝐸𝐸(𝑌𝑌�) 𝑋 4𝐸𝐸(𝑌𝑌�)𝐸𝐸(𝑌𝑌) + 6𝐸𝐸(𝑌𝑌�)𝐸𝐸�(𝑌𝑌) 𝑋 3𝐸𝐸�(𝑌𝑌) 

= 𝜔
8𝜔𝜔

�cosh(4Ω) 𝑋 𝜔
2𝜔𝜔

�cosh(2Ω) + 3
8 𝑋 𝜔𝜔�sinh(3Ω)sinh(Ω) + 3𝜔𝜔sinh�(Ω)

+ 3𝜔𝜔�sinh�(Ω)cosh(2Ω) 𝑋 3𝜔𝜔sinh�(Ω) 𝑋 3𝜔𝜔�sinh�(Ω) 

= 𝜔
8𝜔𝜔

�cosh(4Ω) 𝑋 𝜔
2𝜔𝜔

�cosh(2Ω) + 3
8 𝑋

𝜔
2𝜔𝜔

�cosh(4Ω) + 𝜔
2𝜔𝜔

�cosh(2Ω)

+ 3
2𝜔𝜔cosh(2Ω) 𝑋

3
2𝜔𝜔 𝑋 3

4𝜔𝜔
�cosh(4Ω) 𝑋 3

2𝜔𝜔
�cosh(2Ω) + 3

4𝜔𝜔
�

𝑋 3
2𝜔𝜔cosh(2Ω) +

3
2𝜔𝜔 𝑋 3

8𝜔𝜔
�cosh(4Ω) + 3

2𝜔𝜔
�cosh(2Ω) 𝑋 9

8𝜔𝜔
� 

= 𝜔
8𝜔𝜔

�cosh(4Ω)(𝜔𝜔� 𝑋 4𝜔𝜔� + 6𝜔𝜔 𝑋 3) + 𝜔
2𝜔𝜔

�cosh(2Ω)(𝜔𝜔� 𝑋 3𝜔𝜔 + 2)

+ 3
8 (2𝜔𝜔

� 𝑋 3𝜔𝜔� + 𝜔) 

= 𝜔
8 (𝜔𝜔 𝑋 𝜔)��𝜔𝜔�(𝜔𝜔� + 2𝜔𝜔� + 3𝜔𝜔� 𝑋 3) cosh(4Ω) + 4𝜔𝜔�(𝜔𝜔 + 2) cosh(2Ω)

+ 3(2𝜔𝜔 + 𝜔)�𝑎 

 

 sinh�(Ω) = 𝜔
2 �cosh(2Ω) 𝑋 𝜔�𝑎  

 sinh�(Ω) = 𝜔
8 �cosh(4Ω) 𝑋 4cosh(2Ω) + 3�𝑎  

 sinh(3Ω)sinh(Ω) = 𝜔
2 �cosh(4Ω) 𝑋 cosh(2Ω)�𝑎  

 sinh�(Ω)cosh(2Ω) = 𝜔
4 �cosh(4Ω) 𝑋 2cosh(2Ω) + 𝜔�𝑎  

 E(𝑌𝑌�) = E ��𝜔2 exp �
𝑍𝑍 𝑋 𝑎𝑎
𝑎𝑎 � 𝑋 𝜔

2 exp �𝑋
𝑍𝑍 𝑋 𝑎𝑎
𝑎𝑎 ��

�
�  
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Ω = 𝑐𝑐 𝑐𝑐⁄ , and 𝜔𝜔 = 𝜔𝜔𝜔(1 𝑐𝑐�⁄ ). 
  

= 1
16 𝜔𝜔𝜔 �

−4𝑐𝑐
𝑐𝑐 �E �𝜔𝜔𝜔 �4𝑍𝑍𝑐𝑐 �� −

4
16 𝜔𝜔𝜔 �

−2𝑐𝑐
𝑐𝑐 � E �𝜔𝜔𝜔 �2𝑍𝑍𝑐𝑐 ��

− 4
16 𝜔𝜔𝜔 �

2𝑐𝑐
𝑐𝑐 � E �𝜔𝜔𝜔 �

−2𝑍𝑍
𝑐𝑐 �� + 1

16 𝜔𝜔𝜔 �
4𝑐𝑐
𝑐𝑐 � E �𝜔𝜔𝜔 �

−4𝑍𝑍
𝑐𝑐 �� + 6

16 

= 1
16 𝑒𝑒

���𝜔𝜔� − 1
4 𝑒𝑒

���𝜔𝜔� − 1
4 𝑒𝑒

��𝜔𝜔� + 1
16 𝑒𝑒

��𝜔𝜔� + 3
8 

= 1
8𝜔𝜔

�cosh(4Ω) − 1
2𝜔𝜔

�cosh(2Ω) + 3
8, 

,

,

,

,

,

,
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Appendix C. Derivation of Theorem 1

If we adopt the US distribution to approximate the GB distribution, the pricing 
formula of the GB call option can be derived as follows:12

where M is given in (4) and 
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Appendix C. Derivation of Theorem 1 
If we adopt the US distribution to approximate the GB distribution, the pricing formula of the GB call option 
can be derived as follows:12 

where ℳ  is given in (4) and 𝑓𝑓��(𝑥𝑥𝑥 is the probability density function of the US distribution presented in 
equation (10). 

Based on the changing-variable technique and equation (8), the second integration in equation (29) can be 
straightforward derived as follows. 

where 𝑅𝑅 𝑅 𝑅𝑅 𝑅 𝑅𝑅 sinh−1 ����� �, 𝜙𝜙(𝑥𝑥𝑥 𝑅 �
√�� 𝑒𝑒

��
� ��, and Φ(𝑦𝑦𝑥 𝑅 � 𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧�

�� . 
Similarly, the first integration in equation (29) can be derived as follows. 

 
With equations (29), (30), and (31), the pricing formula of the GB call option can be obtained. The 

derivation of the pricing formula for the GB put option is similar to the call option and thus it has been omitted. 
 
 
  

 
12 The approximation can be viewed as an application of the Edgeworth series expansion (see Cramér, 1946; Kendall and Stuart, 
1977), which shows that a given probability distribution can be approximated by an arbitrary distribution in terms of a series 
expansion involving adjustments of second and higher moments. Jarrow and Rudd (1982) first employ the Edgeworth series expansion 
to price options with the lognormal as the approximating distribution. However, this article adopts the US distribution as the 
approximating distribution. 

 𝐺𝐺𝐺𝐺𝐺𝐺(0𝑥 𝑅 𝑒𝑒��� � (𝑥𝑥 − 𝑥𝑥𝑥𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥
�

�
 

𝑅 𝑒𝑒��� �� 𝑥𝑥𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥
�

�
− 𝑥𝑥� 𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥

�

�
� 

𝑅 𝑒𝑒��� �� 𝑥𝑥𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥
�

��
− � 𝑥𝑥𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥

�

��
− 𝑥𝑥� 𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥

�

��
𝑅 𝑥𝑥� 𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥

�

��
� 

𝑅 𝑒𝑒��� �ℳ − 𝑥𝑥 −� 𝑥𝑥𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥
�

��
𝑅 𝑥𝑥� 𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥

�

��
�, 

 

(29)

 � 𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥
�

��
𝑅 � 𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧

�

��
𝑅 Φ(𝑅𝑅𝑥, (30)

 � 𝑥𝑥𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥
�

��
𝑅 � 𝑎𝑎 𝑅 𝑎𝑎sinh �𝑧𝑧 − 𝑅𝑅

𝑅𝑅 �𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧
�

��
 

𝑅 𝑎𝑎� 𝑎𝑎𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧
�

��
𝑅 𝑎𝑎
2� �exp �𝑧𝑧 − 𝑅𝑅

𝑅𝑅 � − exp �𝑅𝑅 − 𝑧𝑧
𝑅𝑅 �� 𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧

�

��
 

𝑅 𝑎𝑎Φ(𝑅𝑅𝑥 𝑅 𝑎𝑎
2 exp �

1 − 2𝑅𝑅𝑅𝑅
2𝑅𝑅� �Φ�𝑅𝑅 − 1

𝑅𝑅� −
𝑎𝑎
2 exp �

1 𝑅 2𝑅𝑅𝑅𝑅
2𝑅𝑅� �Φ �𝑅𝑅 𝑅 1

𝑅𝑅�. 

(31)

 is the probability density function of the US 
distribution presented in equation (10).

Based on the changing-variable technique and equation (8), the second integration in 
equation (29) can be straightforward derived as follows:

where                                                                                                                      
Similarly, the first integration in equation (29) can be derived as follows:

12 The approximation can be viewed as an application of the Edgeworth series expansion (see 
Cramér, 1946; Kendall and Stuart, 1977), which shows that a given probability distribution can be 
approximated by an arbitrary distribution in terms of a series expansion involving adjustments of 
second and higher moments. Jarrow and Rudd (1982) first employ the Edgeworth series expansion to 
price options with the lognormal as the approximating distribution. However, this article adopts the 
US distribution as the approximating distribution.
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Appendix C. Derivation of Theorem 1 
If we adopt the US distribution to approximate the GB distribution, the pricing formula of the GB call option 
can be derived as follows:12 

where ℳ  is given in (4) and 𝑓𝑓��(𝑥𝑥𝑥 is the probability density function of the US distribution presented in 
equation (10). 

Based on the changing-variable technique and equation (8), the second integration in equation (29) can be 
straightforward derived as follows. 
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Similarly, the first integration in equation (29) can be derived as follows. 

 
With equations (29), (30), and (31), the pricing formula of the GB call option can be obtained. The 

derivation of the pricing formula for the GB put option is similar to the call option and thus it has been omitted. 
 
 
  

 
12 The approximation can be viewed as an application of the Edgeworth series expansion (see Cramér, 1946; Kendall and Stuart, 
1977), which shows that a given probability distribution can be approximated by an arbitrary distribution in terms of a series 
expansion involving adjustments of second and higher moments. Jarrow and Rudd (1982) first employ the Edgeworth series expansion 
to price options with the lognormal as the approximating distribution. However, this article adopts the US distribution as the 
approximating distribution. 
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If we adopt the US distribution to approximate the GB distribution, the pricing formula of the GB call option 
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where ℳ  is given in (4) and 𝑓𝑓��(𝑥𝑥𝑥 is the probability density function of the US distribution presented in 
equation (10). 

Based on the changing-variable technique and equation (8), the second integration in equation (29) can be 
straightforward derived as follows. 
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With equations (29), (30), and (31), the pricing formula of the GB call option can be obtained. The 

derivation of the pricing formula for the GB put option is similar to the call option and thus it has been omitted. 
 
 
  

 
12 The approximation can be viewed as an application of the Edgeworth series expansion (see Cramér, 1946; Kendall and Stuart, 
1977), which shows that a given probability distribution can be approximated by an arbitrary distribution in terms of a series 
expansion involving adjustments of second and higher moments. Jarrow and Rudd (1982) first employ the Edgeworth series expansion 
to price options with the lognormal as the approximating distribution. However, this article adopts the US distribution as the 
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Appendix C. Derivation of Theorem 1 
If we adopt the US distribution to approximate the GB distribution, the pricing formula of the GB call option 
can be derived as follows:12 

where ℳ  is given in (4) and 𝑓𝑓��(𝑥𝑥𝑥 is the probability density function of the US distribution presented in 
equation (10). 

Based on the changing-variable technique and equation (8), the second integration in equation (29) can be 
straightforward derived as follows. 
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With equations (29), (30), and (31), the pricing formula of the GB call option can be obtained. The 

derivation of the pricing formula for the GB put option is similar to the call option and thus it has been omitted. 
 
 
  

 
12 The approximation can be viewed as an application of the Edgeworth series expansion (see Cramér, 1946; Kendall and Stuart, 
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If we adopt the US distribution to approximate the GB distribution, the pricing formula of the GB call option 
can be derived as follows:12 

where ℳ  is given in (4) and 𝑓𝑓��(𝑥𝑥𝑥 is the probability density function of the US distribution presented in 
equation (10). 

Based on the changing-variable technique and equation (8), the second integration in equation (29) can be 
straightforward derived as follows. 
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Similarly, the first integration in equation (29) can be derived as follows. 

 
With equations (29), (30), and (31), the pricing formula of the GB call option can be obtained. The 

derivation of the pricing formula for the GB put option is similar to the call option and thus it has been omitted. 
 
 
  

 
12 The approximation can be viewed as an application of the Edgeworth series expansion (see Cramér, 1946; Kendall and Stuart, 
1977), which shows that a given probability distribution can be approximated by an arbitrary distribution in terms of a series 
expansion involving adjustments of second and higher moments. Jarrow and Rudd (1982) first employ the Edgeworth series expansion 
to price options with the lognormal as the approximating distribution. However, this article adopts the US distribution as the 
approximating distribution. 
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𝑅 � 𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧

�

��
𝑅 Φ(𝑅𝑅𝑥, (30)

 � 𝑥𝑥𝑓𝑓��(𝑥𝑥𝑥𝑅𝑅𝑥𝑥
�

��
𝑅 � 𝑎𝑎 𝑅 𝑎𝑎sinh �𝑧𝑧 − 𝑅𝑅

𝑅𝑅 �𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧
�

��
 

𝑅 𝑎𝑎� 𝑎𝑎𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧
�

��
𝑅 𝑎𝑎
2� �exp �𝑧𝑧 − 𝑅𝑅

𝑅𝑅 � − exp �𝑅𝑅 − 𝑧𝑧
𝑅𝑅 �� 𝜙𝜙(𝑧𝑧𝑥𝑅𝑅𝑧𝑧

�

��
 

𝑅 𝑎𝑎Φ(𝑅𝑅𝑥 𝑅 𝑎𝑎
2 exp �

1 − 2𝑅𝑅𝑅𝑅
2𝑅𝑅� �Φ�𝑅𝑅 − 1

𝑅𝑅� −
𝑎𝑎
2 exp �

1 𝑅 2𝑅𝑅𝑅𝑅
2𝑅𝑅� �Φ �𝑅𝑅 𝑅 1

𝑅𝑅�. 

(31)(31)
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With equations (29), (30), and (31), the pricing formula of the GB call option can be 
obtained. The derivation of the pricing formula for the GB put option is similar to the call 
option and thus it has been omitted.
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