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Abstract
Traditional facility location models assume that the decision maker may assign a facility 
to serve a customer. While this assumption can be true in the case of assigning distribution 
centers to retail stores, it does not apply to the scenarios where end consumers choose 
serving facilities according to personal preferences. The problem becomes even more 
challenging when the facility is with limited capacity and the customer is time-dependent. 
In this study, we consider a decision maker who builds facilities of various scale levels 
to maximize the number of customers served. We propose a mixed integer programming 
formulation to describe the problem. As the problem is NP-hard, we develop a heuristic 
algorithm by reducing part of the problem to the maximum flow problem. Through 
numerical studies we demonstrate the effectiveness of our proposed algorithm.

【Keywords】facility location, preference, capacity, time dependency, maximum flow

領域主編：蔡瑞煌教授

最大化偏好因時而異之消費者服務人數的有限產能設施

選址模型

摘 要

在傳統的設施選址問題中，決策者可以指定由哪個設施去服務哪個顧客。雖然這可能

適用於配送中心與零售店之間；但對於根據自身偏好決定要前往哪個設施的終端消費

者而言，這個設定便顯得不夠實際。當要設置的設施有容量限制，而消費者的偏好又

會因時而異時，這樣的問題將變得更具挑戰性。在這個研究中，我們考慮如何建造不

同規模的設施以吸引盡量多的使用者，並為此建立了一個混合整數規劃模型；又由於

此問題是 NP-hard，本研究開發了一個將一部份問題轉換為最大流問題的啟發性演算
法，並利用數值實驗來檢驗此演算法的成效。

設施選址、偏好、容量限制、因時而異、最大流【關鍵字】
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1. Introduction

The facility location problems have been widely discussed for decades. In a typical 
facility location problem, a decision maker decides where to build facilities among 
some given locations. Typical objectives of the problem include profit maximization, 
cost minimization, etc. for the decision maker. Some facility location problems are 
uncapacitated, i.e., facilities are not subject to capacity constraints. On the contrary, there 
may be capacitated facility location problem, in which facilities have limited amount 
of capacity. Applications of facility location problems lie in the fields of supply chain 
management (Pirkul and Jayaraman, 1998; Shavarani, Mosallaeipour, Golabi, and I˙zbirak, 
2019), logistics (Lu and Bostel, 2007; Hosseini, Dehghanian, and Salari, 2019), operations 
management (Harkness and ReVelle, 2003; Filippi, Guastaroba, and Speranza, 2021), and 
healthcare (de Vries, van de Klundert, and Wagelmans, 2020).

When it comes to service facilities, several extensions for the facility location 
problem have been studied in recent years. One extension is to consider customers, which 
is critical when one builds service facilities like retail stores, parks, hospitals, public 
bike stations, etc. Naturally, these service facilities are heterogeneous to customers, 
i.e., customers would have different preferences toward them. In this case, whether one 
customer would visit one specific facility or not cannot be determined directly by the 
decision maker. Technically speaking, in a traditional facility location problem, a customer 
can be “assigned” to a facility (e.g., a retail store can be assigned to a warehouse for 
replenishment), but in a service facility location problem, a customer cannot be “assigned” 
to a facility (e.g., a retail chain owner cannot require a citizen to visit any specific 
retail store) and can only be “attracted” to a facility. Each of the customers will choose 
facilities to visit based on her/his preference. Applications of facility location problem 
with customer can be in many industries. For example, Shih, Chang, and Peng (2002) 
verify the relationship among customers’ pick-up demands, chain store locations, and 
store performances with empirical studies. Hiassat (2017) presents a model for deciding 
facility locations and allocating healthcare resources according to different customer types. 
Furthermore, the relative problems are also studied for emergency response facilities (Li, 
Zhao, Zhu, and Wyatt, 2011; Abdullah, Adawiyah, and Kamal, 2018), retail stores (Hanjoul 
and Petters, 1987), power stations (Abdel-Basset, Gamal, Chakrabortty, and Ryan, 2021), 
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among others.
A further extension for customer is to incorporate the time dependency of preference. 

In many cases, once a service facility is built, it is open to customers throughout a day. 
However, for a single facility, a customer may have different preferences over different 
activity sessions in a day. For example, while several citizens may be willing to exercise 
in a particular park, some may prefer to exercise in the morning while some may prefer 
to do so in the evening. Suppose that a day is split into three activity sessions: morning, 
afternoon, and evening. To calculate the total number of citizens that may exercise in 
the park in a day, we cannot just multiply that number in any one of the three sessions 
by three. Instead, a model with three activity sessions must be constructed to correctly 
estimate the benefit of building that park. In short, taking the time factor into account is 
needed to make a model much closer to reality.

One major motivating applications of our proposed model is to build public sport 
facilities. With medical technology progressing and economic growth in recent years, 
population aging has become a worldwide issue to be addressed. To improve the welfare 
of an aging society, it is suggested for a government to increase the frequency and strength 
of regular exercise of the elder (Laforge, Rossi, Prochaska, Velicer, Levesque, and 
McHorney, 1999). To make this happen, constructing enough public sport facilities that 
are appropriate to the elder is crucial. To make a good construction decision, the first step 
is being able to estimate the benefit of building some facilities, which may be measured by 
the number of elders using built facilities. An important feature of this problem is that the 
government cannot specify a facility for a citizen; instead, each citizen will make her/his 
own choice. Whether a construction plan may really benefit citizens cannot be determined 
if customer is ignored. Note that typically one citizen only goes out for exercise once in 
a day, different elders prefer different time for exercise, and a facility is generally open 
throughout a day. Therefore, if the government neglects the elders’ time preferences 
and assumes that all elders will compete for the capacitated facility at the same time, 
the effective capacity of a facility becomes underestimated. Formulating a model that 
includes time-dependent customer and multiple activity sessions in a day is thus required 
for this construction plan. In addition, to the best of our knowledge, no previous study 
simultaneously takes aforementioned factors into account. Therefore, our investigation 
and consideration of a capacitated facility location problem along with customers’ time-
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dependent preferences contributes to the literature.
To model time dependency, it is assumed that one day is split into multiple non-

overlapping activity sessions (e.g., morning, afternoon, evening, and midnight). There 
are groups of customers with different population sizes locating at various places. A 
decision maker plans to choose the locations and scale levels to build facilities from 
a set of candidate locations. The scale level determines the number of customers that 
may be served at this facility in an activity session. Customers in the same group tend 
to have identical preferences over each facility in each activity session. Still, they may 
hold different preferences over different facilities or different activity sessions. That is, 
among all built facilities that are still having rooms in some activity sessions, a customer 
will choose her/his most preferred facility-session pair to visit that facility in that activity 
session. Nonetheless, we also assume that a customer always has the option of staying at 
home without visiting any facility, which gives her/him a null utility. That is, if one finds 
that no facility-session pair may give her/him a positive utility, she/he will choose to stay 
at home. 

The decision maker acts to maximize the number of served customers subject to 
a budget constraint. More specifically, the decision maker builds several facilities with 
a constraint that the total construction cost cannot exceed the budget limit. Each of the 
customers then self-selects among built facilities subject to the capacity constraint or 
chooses to stay at home without visiting any facility. The objective function of the decision 
maker is to maximize the number of customers who visit a facility. 

To solve the aforementioned decision maker’s problem of building capacitated 
service facilities, we develop two different solution approaches. The first one is through 
formulating a mixed integer program so that when one seeks for an exact solution, she/he 
may obtain it by solving the program using an existing exact algorithm (such as branch and 
bound). Kang, Kung, Chiang, and Yu (2023) proposes a bi-level model that incorporates 
preference and capacity based on Hanjoul and Petters’ (1987) formulation. Nevertheless, 
Kang et al. (2023)’s model has many constraints and high time complexity also causing 
the problem becomes harder to be solved in acceptable time. Camacho-Vallejo, Casas-
Ramírez, and Miranda-Gonzalez (2014) propose another formulation to turn a bi-level 
model into a single-level one; however, the capacity issue is omitted in their formulation. 
Combining these two works, we formulate a single-level mixed integer program for our 
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capacitated facility location problem considering customer. We further extend the model to 
incorporate multiple activity sessions and allow preferences to be time-dependent.

Given that the problem is NP-hard, in many cases a heuristic algorithm is more 
realistic. In Kang et al. (2023), a heuristic greedy algorithm is designed based on the 
maximum flow model. However, there are two drawbacks of this algorithm. First, the time 
dependency of preference is ignored. Second, the algorithm is computationally inefficient 
due to the fact that the benefits of two neighboring solutions are evaluated by solving two 
independent problems. In this study, we extend the algorithm to take time dependency into 
consideration and speed it up by utilizing some properties among neighboring solutions.

Choosing locations to build facilities is difficult in practice, especially when 
customers’ preference is time-dependent. To take time-dependent preference into 
consideration, for each construction plan, one needs to be able to calculate (or at least 
estimate) the number of customers that may be served in each activity sessions. However, 
even considering capacity limitation and customer together is already difficult enough 
(given the fact that there is almost no academic literature studying these two issues at 
the same time; see Section 2 for more details), not to mention time dependency. Two 
simplified strategies that practitioners typically adopt are: (1) to consider only the activity 
session that has the most demand (if demand varies a lot among sessions); (2) to consider 
the average demand per session (if demand variation is not large). However, these 
strategies make the evaluation of a construction plan imprecise in general. On the contrary, 
the maximum flow-based algorithm proposed in this study allows one to precisely 
calculate the number of customers that may be served in each activity session for any 
construction plan. Our proposed algorithm therefore possesses a unique value.

The remainder of this study is organized as follows. In the next section, we review 
some related works. In Section 3, a bi-level model is presented first. Then a single-level 
reformulation is proposed by using auxiliary variables and constraints. In Section 4, we 
propose a greedy-based heuristic algorithm for solving the problem. A numerical study 
is conducted to demonstrate and compare the performance of the two proposed solution 
approaches in Section 5. Finally, we make conclusions in Section 6. 
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2. Literature Review

A facility location problem is a problem where a decision maker decides where to 
locate facilities and how to assign customers to those built. While many facility location 
problems take facility capacity into consideration (see, e.g., Ho (2015) and Gadegaard, 
Klose, and Nielsen (2018) and the references therein), none of these works include 
customers’ self-selection based on their preferences.

Traditionally, to put customer into a model, researchers usually formulate the problem 
as a bi-level program. In such a program, the upper-level problem is for the decision 
maker to decide locations to build facilities, and the lower-level one is for customers to 
choose facilities to visit. To solve these bi-level programs, reformulating them into single-
level programs is typical. Three reformulations of the uncapacitated bi-level problem 
using sets to express customer are proposed by Hanjoul and Petters (1987) where two 
greedy-based heuristic algorithms are also presented. Some other researchers, e.g., 
Hansen, Kochetov, and Mladenovi (2004), Cánovas, García, Labbé, and Marín (2007), and 
Vasil’ev, Klimentova, and Kochetov (2009), reformulate the model using similar ideas. 
More recently, Camacho-Vallejo, Cordero-Franco, and González-Ramírez (2014) present 
two reformulations. Using the primal-dual relationship and complementary slackness of 
the lower level, they obtain two linearized single-level facility location models.

As the reformulation methods adopted in the above works prove to be not so efficient, 
researchers have invented other approaches. In particular, Berman, Drezner, Tamir, and 
Wesolowsky (2009), and Espejo, Marín, and Rodríguez-Chía (2012) both propose the so-
called “closest assignment constraints” to turn the bi-level model into a single-level one; 
Camacho-Vallejo, Casas-Ramírez, and Miranda-Gonzalez (2014) further apply this idea to 
facility location problems with customers. Their computational result shows that the new 
reformulation requires less time compared to those previous reformulation methods. Thus, 
in this study, we borrow the idea from Camacho-Vallejo, Casas-Ramírez, and Miranda-
Gonzalez (2014) and add capacity and time-dependent preference constraints to formulate 
our model.

There are some more recent works regarding customers in facility location problems. 
Based on the models designed by Camacho-Vallejo, Cordero-Franco, and González-
Ramírez (2014) and Camacho-Vallejo, Casas-Ramírez, and Miranda-Gonzalez (2014), 

6

Optimal Allocation of Capacitated Facilities Considering Time-Dependent User Preference for User Number 
Maximization



Casas-Ramírez, Camacho-Vallejo, and Martínez-Salazar (2018) use a cross entropy 
method to solve the upper-level problem and a greedy randomized adaptive procedure to 
solve the lower-level one. Drezner, Drezner, and Zerom (2018), though do not directly 
model customers, assume that the facilities’ attractiveness may be randomly distributed. 
Calvete, Galé, Iranzo, Camacho-Vallejo, and Casas-Ramírez (2020) add the cardinality 
constraint into a facility location problem with preference by limiting the maximum 
number of customer points that can be assigned to each facility point. Notably, these 
works either ignore the capacity issue or only impose a weaker version of the capacity 
constraint (e.g., the cardinality constraint). We contribute to the literature by incorporating 
the capacity and preference issues in a single model.

Our goal is to build several finite-capacity facilities under a budget constraint and 
to maximize the total number of customers with time-dependent preferences. To the 
best of our knowledge, Kang et al. (2023) is so far the only work that explicitly includes 
both customer and facility capacity in a single model (though excludes customers’ time 
preferences). He proposes a greedy algorithm for solving that NP-hard problem. In each 
iteration, the benefit evaluation problem is transformed into a maximum flow problem, and 
the location with the highest benefit-to-cost ratio is selected. In our study, we extend the 
formulation and revise the algorithm to incorporate the time factor. 

3. Problem Description and Formulation

In this section, we provide the statement and formulation of our capacitated facility 
location problem with time-dependent user preference. 

3.1 Uncapacitated Facilities with Customer Preference
We consider a decision maker deciding where to build facilities along with the scale 

levels but without capacity constraints. Let J={1,2,3,...,|J|} denote the set of locations where 
a facility may be built, and K={1,2,3,...,|K|} represent the set of scale levels that for each 
facility decision maker may choose from. The parameter fjk represents the fixed cost of 
building the facility at location j with scale level k. Without loss of generality, we assume 
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that 0≤ fj,1≤ fj,2≤ ...≤ fj,|K| for all facility j.1 For ease of exposition, we may call the facility 
built on location j as facility j from time to time. I={1,2,3,…,|I|} is the set of customer 
locations, where di is the population size at customer location i. For ease of exposition, 
we may call the customers at location i as customer i, and di as the demand of customer i 
from time to time. It is assumed that one day is split into several non-overlapping activity 
sessions in which one customer chooses at most one session to visit a facility. To represent 
the fact, let T={1,2,3,…,|T|} be the set of activity sessions. Customer i has a preference 
level over facility j in activity session t, represented by pijt. We have pi,j1,t>pi,j2,t if customer 
i prefers facility j1 to facility j2 in activity session t. For those customers at the same 
location, we assume that they have identical preference for the same facility in the same 
activity session. The total budget for building facilities is B. 

The decision maker’s decision is to choose locations to build facilities at a certain 
scale level. To model this, let yjk∈{0,1} be 1 if a facility is built at location j with scale 
level k or 0 otherwise. The special case y0,k for any k is always 1 since customers can 
decide to stay at home in any activity sessions. After facilities are built, each customer 
either chooses one activity session to visit one facility or stays at home. That decision 
is made according to her/his preferences. We assume that customers’ preferences are 
exogenous; i.e., the preference over one facility will not be affected by other customers’ 
decisions or whether other facilities are built or not.

We first model customers’ choice when facilities all have ample capacity, i.e., the 
number of customers going to the same facility in the same activity session is unlimited. 
In this case, let xijt ∈{0,1} present whether customers at location i go to facility j in activity 
session t (xijt=1) or not (xijt=0). Note that xijt will not be fractional in equilibrium, i.e., all 
customers at the same location may make the same decisions, because the capacity of 
facility is infinite.

Collectively, we may formulate the decision maker’s problem as2 

1 If the number of the scale level candidates of location j is less than |K|, set fj,k' to infinite for those k' ∈ 
K which cannot be chosen for location j.

2 Note that in this formulation, it does not matter whether we set xijt ∈ {0,1} or xijt ∈ [0,1]. However, as 
we do not intend to solve this uncapacitated problem, we leave the setting to be binary to highlight 
the fact that xijt will either be 0 or 1 in an optimal solution.
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The objective function (1) of the model is to maximize the total number of served 
customers. Constraint (2) ensures that the decision maker can only build at most one 
facility with one scale level at each location. Constraint (3) requires that the total 
construction cost should not exceed the given budget B. In (4), the total proportion of 
customers visiting facilities cannot exceed 1. The fact that each customer chooses her/
his most preferred facility-session pair is modeled in (5), where Aijt is set to 1 if pijt > 0 or 
0 otherwise. Constraint (5) ensures that a customer chooses a facility-session pair only if 
her/his possesses a positive utility over it. Note that because the decision maker cares only 
the total number of served customers, whether a customer goes to her/his most preferred 
facility-session pair or any other one is not an issue. Thus, there is no need to write this 
constraint to restrict one to visit her/his most preferred option. Constraints (6) and (7) state 
that xijt and yjk are binary. Note that in this formulation, it does not matter whether xijt is 
fractional or binary. 
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3.2 Capacitated Facilities with Customer Preference
In order to incorporate capacity limitation, let qjk represent the capacity of facility j 

with scale level k. Without loss of generality, we assume that 0 ≤ qj,1 ≤ qj,2 ≤⋯ ≤ qj,|K| for all 
facility j. Recall that it is always possible that all built facilities are not attractive enough 
for a customer (e.g., are all too far), and the customer may choose to stay at home without 
visiting any facility. To model this, we add a virtual location, location 0, into the set J' and 
define J={0}∪ J'. Location 0 has no construction cost (i.e., f0,k for all ), infinite capacity (i.e., 
f0,k=0 is infinite for all k ∈ K), and zero preference level for all customers in all activity 
sessions (i.e., pi,0,t = 0 for all i ∈ I, t ∈ T).

We then modify xijt so that xijt ∈ [0,1] presents the proportion of customer i going 
to facility j in activity session t. Note that now xijt must be fractional instead of binary 
because now facilities are capacitated, and it is possible for customers at the same location 
to make different decisions.

We now need to add constraints to ensure that a customer cannot go to a facility-
session pair if there is another more preferred pair that is still available. To do this, we 
define three auxiliary variables wjt, zi, and xijt. A binary variable wjt is 1 if facility j is still 
available in equilibrium in activity session t with respect to the capacity constraint. The 
variable zi represents customer i’s preference of the most preferred facility-session pair 
among all available ones. The binary variable xijt is 1 if at least one customer in location 
i go to facility j in activity session t. In effect, xijt is 1 implies that either facility j is out 
of capacity in activity session t in equilibrium or that facility-session pair is the most 
preferred out of all available ones.
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problem does not need to precisely estimate all the preference levels pijt. Instead of this, 
the decision maker only needs to estimate whether a given preference level pijt is positive 
or not. In this study, we still choose to formulate the problem with pijt as a real number to 
retain the generality of our model.

We may show that the problem is NP-hard by reducing the problem studied in Kang 
et al. (2023) to our problem. This is trivial by observing that his problem is a special case 
of ours with |T|=1, i.e., there is only one activity session.

3.3 An Illustrative Example
The following example shows how these constraints express the preference rela- 

tionship. In this example, there are three built facilities and two activity sessions which 
means six facility-session pairs. Suppose that customers all live in the same location, say 
location 1, the preferences of customers and residual capacity of facility-session pairs are 
listed in Table 1. We assume that the total demand of the customers at location 1 is 1.

Table 1  The Preference and Residual Capacity of the Example
(j, t) p1,j,t residual capacity

(1, 1) 0.1 1
(1, 2) 0.2 1
(2, 1) 0.3 0.3
(2, 2) 0.4 0.3
(3, 1) -0.5 0.5
(3, 2) -0.6 0.5

In this case, no one will go to facility 3 in any activity session since the customers 
hold negative preference over pairs (3, 1) and (3, 2), which is lower than the zero utility 
of staying at home. Therefore, facility 3 does not need to be taken into consideration. If 
the customers choose facility-session pairs (1, 2) and (2, 2) with proportion 0.7 and 0.3, 
the status is presented in Table 2. Since only pair (2, 2) is fully occupied (i.e. w2,2=0), 
according to constraint (11), the preference of the most preferred available pair among 
available ones is p1,2,1 (i.e. z1=0.3). Constraint (12) restricts x1,1,2 to be 0 since it is not 
the most preferred one. However, this creates a contradiction with the result given by 
constraint (13), where x1,1,2=1. The above discussion is summarized in Table 2. 

12

Optimal Allocation of Capacitated Facilities Considering Time-Dependent User Preference for User Number 
Maximization



Table 2  The Case Violating Preference Constraint
(j, t) p1,j,t x1,j,t residual capacity wjt x1,j,t in (12) x1,j,t in (13)

(1, 1) 0.1 0 1 1 0 0
(1, 2) 0.2 0.7 0.3 1 0 1
(2, 1) 0.3 0 0.3 1 1 1
(2, 2) 0.4 0.3 1 0 1 1

The above solution (x1,1,2=x2,2,2>0) cannot be a valid equilibrium outcome is due to the 
fact that there exists an available facility-session pair that is more preferred than one that 
is chosen by some customers (i.e., p1,2,1>p1,1,2 while (2, 1) still has residual capacity). For 
this example, the only valid equilibrium that satisfies all preference constraints is listed 
in Table 3. In this case, the customers choose to go to facility 1 in session 2 and facility 
2 in both sessions with proportion 0.4, 0.3, and 0.3, respectively. Similarly, according to 
constraint (11), the value of z1 is 0.2, and no constraint is violated.

In short, our formulation guarantees that if there is still any available facility that a 
customer prefers more, the customer will go to the more preferred one instead of others. 
Therefore, each customer will act to maximize her/his preference.

Table 3  The Case Satisfying Preference Constraint
(j, t) p1,j,t x1,j,t residual capacity wjt x1,j,t in (12) x1,j,t in (13)

(1, 1) 0.1 0 1 1 0 0
(1, 2) 0.2 0.4 0.6 1 1 1
(2, 1) 0.3 0.3 0 0 1 1
(2, 2) 0.4 0.3 0 0 1 1

3.4 A Note on the Activity Sessions
While the sets of customers I and facilities J are pretty much given, the set of activity 

sessions T is artificially determined by the decision maker. One may wonder how a 
practitioner may determine the time unit and number of activity sessions T in a time unit 
when applying this model. We briefly discuss this issue in this section to provide a guide 
for practitioners.

One basic rule is that a time unit should be chosen so that a customer rarely wants 
to visit a facility more than once in a day. For example, if customers are residents and 
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facilities are parks, courts, and sporting centers for residents to exercise there, one day 
should be a good candidate of a time period. The length of an activity session should then 
be determined with the following consideration. First, a customer’s preference of visiting 
a facility should be roughly the same within the same activity session. It is thus not a 
good idea to split one day into only two activity sessions “midnight to noon” and “noon to 
midnight”, because one’s preference to jog on streets around 7 AM and 11 AM should be 
significantly different. Second, the length of an activity session should also be long enough 
so that it is reasonable for one to distinguish two different activity sessions. For example, 
splitting a day into 24 or even 48 activity sessions when consideing customers’ visiting to 
sport facilities can be a bad idea.

In short, the length of an activity session should be chosen so that the estimation of 
customers can be reasonably performed, and the number of activity sessions may then be 
determined accordingly. 

4. Algorithms and Analysis

In this section, we propose an iterative greedy heuristic algorithm for our problem. 

4.1 Greedy Selection Algorithm with Maximum Flow (GSAMF)
4.1.1 The Algorithm

We propose a greedy algorithm that in each iteration, we select the facility and its 
scale levels with the best performance ratio among those unbuilt ones and add it into the 
construction plan. The selection process stops when there is not enough budget to build 
more new facilities.

As described in Section 3, among the built facilities, the customers will choose 
where to go according to their preference order. Therefore, once we are given a set of 
built facilities with determined scale levels, represented by y=[yjk]j∈J, k∈K, we have to find 
the number of customers served by this plan, i.e., to solve the objective value z(y) of the 
following program 
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Kang et al. (2023) proposes a way to transform the benefit evaluation problem 
to a maximum flow problem. We now show how to extend this method to incorporate 
time dependency, which is not considered in his work. Given a construction plan y, we 
construct a directed acyclic graph whose structure is similar to that in Figure 1. For each 
customer location i, we add a customer node Ci into the graph. A source node S is created 
and connected to customer node Ci with capacity di for all i ∈ I. For facility j, if under 
the given construction plan it is built at scale level k (i.e., yjk=1), we add a node Fjt for 
each of activity session t. A destination node D is created and linked from node Fjt with 
capacity qjk. Finally, a link from node Ci to node Fjt is added with infinite capacity if pijt > 0. 
Figure 1 is an example for three customers, two activity sessions, and a construction plan 
that builds three facilities. According to the way we connect Ci and Fjt, we find customer 
1 is unwilling to visit facility 2 in activity session 1. Once the graph is constructed, its 
maximum flow may be solved. For the maximum flow instance made from a construction 
plan y, we denote the maximized flow value as w(y).

Note that the information about preference levels pijt is largely omitted in the 
constructed maximum flow problem: It only matters whether pijt > 0 or not. It is thus not 
surprising that the solutions to the two problems are not the same. Nevertheless, as for the 
benefit evaluation problem all we need is the objective value, the constructed maximum 
flow problem is enough. We now show in Theorem 1 that the maximized flow value of the 
maximum flow problem constructed given a construction plan y is always identical to z(y), 
the objective value of the benefit evaluation problem.

Theorem 1: For any construction plan y, we have z(y)=w(y). 

Proof. Given any construction plan y, each flow on the graph we constructed is 
bounded by the demand of customers and capacity of facilities. Therefore, the capacity 
constraints in benefit evaluation problem are obeyed. For every node Ci, if the maximum 
flow flows out according to the preference levels in equilibrium, the customers’ decisions 
in graph are exactly the same as that in the benefit evaluation problem. It turns out 
z(y)=w(y). Based on this maximum flow instance, assume that there is at least one flow 
flowing out some node Ci changes to the less preferred edge. If this change does not 
decrease w(y), i.e., does not make any edge out of capacity, z(y)=w(y). If it does, this new 
instance is impossible to be an outcome of the maximum flow problem. In conclusion, 
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even we allow the customers to choose the facility which is not her/his most preferred in 
constructed maximum flow, z(y)=w(y) still holds.

Theorem 1 provides us a way to solve the benefit evaluation problem. With this, we 
are now ready to describe the structure of our proposed algorithm, GSAMF. To do this, 
we further define two functions f(y) and Ratio(j,k|y). The function f(y) is the total fixed 
construction cost given a construction plan y, i.e.,

The function Ratio(j,k|y) is the benefit-to-cost ratio by adding facility j with scale 
level k into a construction plan to form a new plan y. Let yorigin (j0,k0|y) be the original 
construction plan before adding facility j0 at scale level k0 to form plan y, i.e.,

The ratio function is then defined as3

3 We have examined the performance of four different ratios, where the numerator may be z(y) or 
z(y)-z(yorigin (j,k|y)), and the denominator may be f(y) or fjk. It turns out that the combination of z(y)-z(y-
origin (j,k|y)) and fjk results in the best performance.
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that there is at least one flow flowing out some node C� changes to the less preferred 

edge. If this change does not decrease 𝑤𝑤𝑤𝑤𝑤𝑤, i.e., does not make any edge out of 

capacity, 𝑧𝑧𝑧𝑧𝑧𝑧 𝑧𝑧 𝑧𝑧𝑧𝑧𝑧𝑧𝑧. If it does, this new instance is impossible to be an outcome 

of the maximum flow problem. In conclusion, even we allow the customers to choose 

the facility which is not her/his most preferred in constructed maximum flow, 𝑧𝑧𝑧𝑧𝑧𝑧 𝑧𝑧
 𝑤𝑤𝑤𝑤𝑤𝑤 still holds. 

Theorem 1 provides us a way to solve the benefit evaluation problem. With this, 

we are now ready to describe the structure of our proposed algorithm, GSAMF. To do 

this, we further define two functions 𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅. The function 𝑓𝑓𝑓𝑓𝑓𝑓 is 

the total fixed construction cost given a construction plan 𝑦𝑦, i.e., 

𝑓𝑓(𝑦𝑦) 𝑧��𝑓𝑓��𝑦𝑦��
�𝑗��𝑗�

. 

The function 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅 is the benefit-to-cost ratio by adding facility 𝑗𝑗 with scale 

level 𝑘𝑘 into a construction plan to form a new plan 𝑦𝑦. Let 𝑦𝑦������(𝑗𝑗�,𝑘𝑘 �|𝑦𝑦𝑦 be the 

original construction plan before adding facility 𝑗𝑗� at scale level 𝑘𝑘� to form plan 𝑦𝑦, 

i.e., 

𝑦𝑦��������(𝑗𝑗�,𝑘𝑘 �|𝑦𝑦) 𝑧 �𝑦𝑦�� − 1, if (𝑗𝑗𝑗𝑗𝑗 ) = (𝑗𝑗�,𝑘𝑘 �)
𝑦𝑦��, otherwise     ∀𝑗𝑗 𝑗 𝑗𝑗𝑗𝑗𝑗  𝑗 𝑗𝑗𝑗 

( )
− 1, if ( ) = ( )

, otherwise
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The ratio function is then defined as3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗) = ������������������������
�������������������������� =

�(�)����������(�𝑗�𝑗�)�
���

. 

In each iteration of GSAMF, we are given an original construction plan. We test 

each unbuilt facility with each candidate scale level by calculating the benefit-to-cost 

ratio upon adding it into the given construction plan. After choosing the one resulting 

in the highest ratio, we proceed to the next iteration. We stop until all locations have 

been chosen or we run out of budget. The pseudocode of the greedy selection algorithm 

with maximum flow is presented in Algorithm 1. 

  

 
3 We have examined the performance of four different ratios, where the numerator may be 

𝑧𝑧𝑧𝑧𝑧𝑧 or 𝑧𝑧(𝑦𝑦) − 𝑧𝑧 �𝑦𝑦������(𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗)�, and the denominator may be 𝑓𝑓𝑓𝑓𝑓𝑓 or 𝑓𝑓��. It turns out that the 

combination of 𝑧𝑧(𝑦𝑦) − 𝑧𝑧 �𝑦𝑦������(𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗)� and 𝑓𝑓�� results in the best performance. 

Figure 1  An Example of the Maximum Flow Graph
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In each iteration of GSAMF, we are given an original construction plan. We test each 
unbuilt facility with each candidate scale level by calculating the benefit-to-cost ratio upon 
adding it into the given construction plan. After choosing the one resulting in the highest 
ratio, we proceed to the next iteration. We stop until all locations have been chosen or we 
run out of budget. The pseudocode of the greedy selection algorithm with maximum flow 
is presented in Algorithm 1.

4.1.2 Time Complexity
Let V and E be the sets of the nodes and edges in the graph, the numbers of V and 

E satisfy |V|≤|I|+|J||T|+2 and |E|≤|I||J||T|+|I|+|J||T|. A classic way to solve maximum flow 
problem is to use the Edmonds-Karp algorithm proposed in Edmonds and Karp (1972), 
which is an implementation of Ford-Fulkerson method using breadth-first search in finding 
the augmenting path. The Edmonds-Karp algorithm provides a solution with a O(|V||E|2) 
bound. Therefore, in our problem, the time complexity of solving the maximum flow 
problem is O(|V| |E|2)=O(|I|3 |J|2|T|2).

Algorithm 1 Greedy Selection Algorithm with Maximum Flow (GSAMF)
1: y ← 0,S ← ∅

2: repeat
3: bestRatio ← 0,(j*,k*) ← (0, 0)
4:   for j ∈ J \ S do
5:     for k ∈ K do
6:       if f(y) + fjk ≤ B then
7:         yjk←1
8:         aRatio ← Ratio(j,k|y)
9:         if aRatio > bestRatio then

10:           bestRatio ← aRatio,(j*,k*)←(j,k)
11:         end if
12:         yjk←0
13:       end if
14:     end if
15:   end if
16:   yj* k* ←1,S←S∪{ j* }
17: until (j*,k*)=(0,0)
18: return y
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In each iteration, our algorithm spends O(|I|2 |J|3|T|3) to compute the number of the 
customers served by the construction plan. The algorithm runs for at most |J| iterations. In 
the jth iteration, it solves at most (|J|-j+1)|K| maximum flow problems, each with j facility 
nodes in the graph, which means the complexity of completing the jth iteration is O(|I|2 

J3|T|3). Therefore, the total time complexity is

4.1.3 Incremental Maximum Flow
In each iteration of GSAMF, we try all unbuilt facilities to add one into the 

construction plan with solving the maximum flow problem, which takes long 
computational time. However, in our algorithm, there are only slight changes of the 
graph comparing to those in previous iterations; most of the flows are still the same. We 
only need to find new augmenting path and the backward path after adding new facility 
nodes and edges. More precisely, adding a new edge is equivalent to changing one edge’s 
capacity from zero to some positive number on the previous solved graph. The difference 
between previous maximum flow and the new one will only be determined by those 
vertices affected by this insertion. Therefore, whenever we add a new facility into the 
construction plan, instead of creating a whole new graph, we add vertices and edges to the 
previous solved graph and then continue solving the maximum flow problem.

Kumar and Gupta (2003) propose an incremental algorithm for the maximum 
flow problem of inserting an edge in the graph. The time complexity of the algorithm is 
O(|∆V|2|E|), where |∆V| is the number of affected vertices and |E| is the number of edges. 
When an edge is inserted into the graph, there may exist new augmenting path from 
source to sink through the new edge. The affected vertices are those that lie on at least 
one augmenting path. That is, when we add a new facility j into the construction plan, it is 
equivalent to insert |T| edges, i.e., (fjt,d) for all t ∈ T, to the graph and each insertion affects 
|∆V|=O(|I|+3) nodes. Therefore, the total time complexity of adding a new facility to the 
graph is
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4.1.2 Time Complexity 

Let 𝑉𝑉 and 𝐸𝐸 be the sets of the nodes and edges in the graph, the numbers of 𝑉𝑉 

and 𝐸𝐸  satisfy |𝑉𝑉𝑉 𝑉 𝑉𝑉𝑉𝑉 𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑉 𝑉  and |𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸       . A classic 

way to solve maximum flow problem is to use the Edmonds-Karp algorithm proposed 

in Edmonds and Karp (1972), which is an implementation of Ford-Fulkerson method 

using breadth-first search in finding the augmenting path. The Edmonds-Karp 

algorithm provides a solution with a 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂�) bound. Therefore, in our problem, 

the time complexity of solving the maximum flow problem is 

𝑂𝑂(|𝑉𝑉||𝐸𝐸|�) = 𝑂𝑂(|𝐼𝐼|�|𝐽𝐽|�|𝑇𝑇|�). 

In each iteration, our algorithm spends 𝑂𝑂𝑂|𝐼𝐼|�|𝐽𝐽|�|𝑇𝑇|�) to compute the number 

of the customers served by the construction plan. The algorithm runs for at most |𝐽𝐽𝐽 

iterations. In the 𝑗𝑗��  iteration, it solves at most (|𝐽𝐽𝐽 𝐽 𝐽𝐽𝐽  𝐽𝐽𝐽𝐽𝐽𝐽  maximum flow 

problems, each with 𝑗𝑗 facility nodes in the graph, which means the complexity of 

completing the 𝑗𝑗�� iteration is 𝑂𝑂𝑂|𝐼𝐼|�𝑗𝑗�|𝑇𝑇|�). Therefore, the total time complexity is 

𝑂𝑂��(|𝐽𝐽| − 𝑗𝑗 𝑗𝑗 )
|�|

���
|𝐾𝐾|(|𝐼𝐼|�𝑗𝑗�|𝑇𝑇|�)� = 𝑂𝑂(|𝐼𝐼|�|𝐽𝐽|�|𝑇𝑇|�|𝐾𝐾|). 

4.1.3 Incremental Maximum Flow 

In each iteration of GSAMF, we try all unbuilt facilities to add one into the 

construction plan with solving the maximum flow problem, which takes long 

computational time. However, in our algorithm, there are only slight changes of the 

graph comparing to those in previous iterations; most of the flows are still the same. 

We only need to find new augmenting path and the backward path after adding new 
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facility nodes and edges. More precisely, adding a new edge is equivalent to changing 

one edge’s capacity from zero to some positive number on the previous solved graph. 

The difference between previous maximum flow and the new one will only be 

determined by those vertices affected by this insertion. Therefore, whenever we add a 

new facility into the construction plan, instead of creating a whole new graph, we add 

vertices and edges to the previous solved graph and then continue solving the maximum 

flow problem. 

Kumar and Gupta (2003) propose an incremental algorithm for the maximum flow 

problem of inserting an edge in the graph. The time complexity of the algorithm is 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂�|𝐸𝐸𝐸𝐸, where |∆𝑉𝑉𝑉 is the number of affected vertices and |𝐸𝐸𝐸 is the number of 

edges. When an edge is inserted into the graph, there may exist new augmenting path 

from source to sink through the new edge. The affected vertices are those that lie on at 

least one augmenting path. That is, when we add a new facility 𝑗𝑗 into the construction 

plan, it is equivalent to insert |𝑇𝑇𝑇 edges, i.e., (𝑓𝑓��, 𝑑𝑑𝑑 for all 𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡, to the graph and 

each insertion affects |∆𝑉𝑉𝑉 𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑉 𝑉𝑉 nodes. Therefore, the total time complexity 

of adding a new facility to the graph is 

O(|∆𝑉𝑉𝑉�|𝐸𝐸||𝑇𝑇|) 𝑉 𝑂𝑂 ��(|𝐼𝐼| +3 )�(|𝐼𝐼| + |𝐼𝐼||𝐽𝐽||𝑇𝑇| + |𝐽𝐽||𝑇𝑇|)�|𝑇𝑇|� 𝑉 𝑂𝑂(|𝐼𝐼|�|𝐽𝐽||𝑇𝑇|�), 

and the total time complexity is 

𝑂𝑂��(|𝐽𝐽| − 𝑗𝑗 𝑗 𝑗)
|�|

���
|𝐾𝐾|(|𝐼𝐼|�𝑗𝑗|𝑇𝑇|�)� = 𝑂𝑂(|𝐼𝐼|�|𝐽𝐽|�|𝑇𝑇|�|𝐾𝐾|). 

The implementation with incremental maximum flow indeed reduces the time 

complexity of GSAMF. 
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and the total time complexity is

The implementation with incremental maximum flow indeed reduces the time complexity 
of GSAMF.

4.2 Greedy Selection Algorithm with Maximum Flow Estimation (GSAMFE)
In our algorithm, given a construction plan y, we have to calculate the corresponding 

number of served customers. However, considering the large number of customers and 
facilities, it requires long computational time even using the incremental maximum flow 
idea may still be too time-consuming. Therefore, we adopt the flow estimation algorithm 
proposed in Kang et al. (2023) to evaluate the objective value and extend it to the scenario 
with time dependency.

Let Ijt be the set of customers that pijt > 0 for facility j at activity session t and Ijt be the 
set of facilities that pijt > 0 for customer i at activity session t. Given any construction plan 
y, we define two variables αi(y) and βjk, where the former is called the potential demand of 
customer i, and the latter is called the potential supply of facility j of scale level k. More 
precisely, we define 

and

The estimated objective value z'(y) of the construction plan y is the minimum of the 
potential demand and supply, i.e.,
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4.2 Greedy Selection Algorithm with Maximum Flow Estimation 

(GSAMFE) 

In our algorithm, given a construction plan 𝑦𝑦 , we have to calculate the 

corresponding number of served customers. However, considering the large number of 

customers and facilities, it requires long computational time even using the incremental 

maximum flow idea may still be too time-consuming. Therefore, we adopt the flow 

estimation algorithm proposed in Kang et al. (2023) to evaluate the objective value and 

extend it to the scenario with time dependency. 

Let 𝐼𝐼�� be the set of customers that 𝑝𝑝��� > 0 for facility 𝑗𝑗 at activity session 𝑡𝑡 

and 𝐽𝐽��  be the set of facilities that 𝑝𝑝��� > 0 for customer 𝑖𝑖  at activity session 𝑡𝑡 . 

Given any construction plan 𝑦𝑦, we define two variables 𝛼𝛼�(𝑦𝑦𝑦 and 𝛽𝛽��, where the 

former is called the potential demand of customer 𝑖𝑖, and the latter is called the potential 

supply of facility 𝑗𝑗 of scale level 𝑘𝑘. More precisely, we define  

𝛼𝛼�(𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦 �𝑑𝑑�, � � � 𝑞𝑞��𝑦𝑦��
�����������

� 

and 

𝛽𝛽�� 𝑦 � 𝑦𝑦𝑦 � � 𝑑𝑑�, 𝑞𝑞��
�����

� .
���

 

The estimated objective value 𝑧𝑧�(𝑦𝑦𝑦 of the construction plan 𝑦𝑦 is the minimum of the 

potential demand and supply, i.e., 

𝑧𝑧�(𝑦𝑦) =min  �� 𝛼𝛼�(𝑦𝑦), � � 𝛽𝛽��
������

 
���

�. 
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In our algorithm with flow estimation, we replace z(y) in GSAMF with its estimated 
value z'(y). We therefore replace Ratio(j,k|y) by Ratio'(j,k|y), which is defined as

The pseudocode of the greedy selection algorithm with maximum flow estimation 
(GSAMFE) is presented in Algorithm 2. The only difference between Algorithms 1 and 2 
is using Ratio(j,k|y) or Ratio'(j,k|y) (i.e. z(y) or z'(y)) in each iteration. While this is some 
kind of approximation, a huge amount of computation time may be saved.

We now analyze the complexity of GSAMFE. First of all, ∑j∈J∑k∈Kβjk should be 
calculated before the greedy selection starts. The time it takes is O(|I||J||K||T|). Second, 
the values of αi(y) should be initialized to di for all customer i. This takes O(|I|). The final 
part is the greedy selection, whose structure of GSAMFE is the same as that of GSAMF. 
Therefore, GSAMFE also runs for at most |J| iterations, and in the jth iteration, it does at 
most (|J|-j+1)|K| times of flow estimation. For each time of flow estimation, a new facility 
of a certain scale level is added, which requires GSAMFE to update the values of αi(y) 
for all customers who are willing to visit the newly added facility in at least one activity 
session. Such updating can be done in O(|I||T|). Collectively, the total time complexity is

Compared to GSAMF, which solves for the exact flow amount for each construction 
plan, GSAMFE indeed saves time with the idea of flow estimation.

4.3 An Illustrative Example
In this section, we demonstrate an example of the GSAMFE algorithm to better 

explain how it works. Suppose that there are three customers, three facilities, and 
two activity sessions. For each facility, there are two scale levels. The budget of the 
construction plan B=70, and the customer demands, facility capacities, and facility 
construction costs are listed in Tables 4 and 5. In Table 6, we label the preference levels 

larger than 0 with the plus sign (+).
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In our algorithm with flow estimation, we replace 𝑧𝑧𝑧𝑧𝑧𝑧  in GSAMF with its 
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The pseudocode of the greedy selection algorithm with maximum flow estimation 

(GSAMFE) is presented in Algorithm 2. The only difference between Algorithms 1 and 

2 is using 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗) or 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�(𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗) (i.e. 𝑧𝑧𝑧𝑧𝑧𝑧 or 𝑧𝑧�(𝑦𝑦)) in each iteration. 

While this is some kind of approximation, a huge amount of computation time may be 

saved. 

We now analyze the complexity of GSAMFE. First of all, ∑ ∑ 𝛽𝛽��������  should 

be calculated before the greedy selection starts. The time it takes is 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂. 
Second, the values of 𝛼𝛼�(𝑦𝑦𝑦 should be initialized to 𝑑𝑑� for all customer 𝑖𝑖. This takes 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂. The final part is the greedy selection, whose structure of GSAMFE is the same 

as that of GSAMF. Therefore, GSAMFE also runs for at most |𝐽𝐽𝐽 iterations, and in the 

𝑗𝑗�� iteration, it does at most (|𝐽𝐽𝐽𝐽𝐽𝐽   𝐽 𝐽𝐽𝐽𝐽𝐽𝐽 times of flow estimation. For each time 

of flow estimation, a new facility of a certain scale level is added, which requires 

GSAMFE to update the values of 𝛼𝛼�(𝑦𝑦𝑦 for all customers who are willing to visit the 

newly added facility in at least one activity session. Such updating can be done in 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂. Collectively, the total time complexity is 

O�|𝐼𝐼||𝐽𝐽||𝐾𝐾||𝑇𝑇| + |𝐼𝐼| 𝐽�(|𝐽𝐽| − 𝑗𝑗 𝑗𝑗 )|𝐾𝐾|(|𝐼𝐼||𝑇𝑇|)
|�|

���
� = 𝑂𝑂(|𝐼𝐼||𝐽𝐽|�|𝐾𝐾||𝑇𝑇|). 

Compared to GSAMF, which solves for the exact flow amount for each construction 

plan, GSAMFE indeed saves time with the idea of flow estimation. 
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Table 4  Example Demands
customer i demand di

1 4
2 9
3 11

Table 5  Example Capacities and Construction Costs
facility j scale level k capacity qjk construction cost fjk

1 1 4 10
1 2 8 70
2 1 4 35
2 2 8 50
3 1 5 10
3 2 10 60

Algorithm 2 Greedy Selection Algorithm with Maximum Flow Estimation (GSAMFE)
1: y ← 0,S ← ∅

2: repeat
3: bestRatio ← 0,(j*,k*) ← (0, 0)
4:   for j ∈ J \ S do
5:     for k ∈ K do
6:       if f(y) + fjk ≤ B then
7:         yjk←1
8:         aRatio ← Ratio'(j,k|y)
9:         if aRatio > bestRatio then

10:           bestRatio ← aRatio,(j*,k*)←(j,k)
11:         end if
12:         yjk←0
13:       end if
14:     end if
15:   end if
16:   yj* k* ←1,S←S∪{ j* }
17: until (j*,k*)=(0,0)
18: return y
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The preference of customers can be transformed into the graph as a maximum flow 
problem as Figure 1 in Section 4.1.1.

Table 6  Example Preferences (Positive Ones Are Marked)

customer i
(j, t): facility j with activity session t

(1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2)
1 + +
2 + +
3 + +

We now start to run GSAMF and GSAMFE on this example. In iteration 1, the 
estimation step of first iteration, since none of the facilities are added into the construction 
plan, we compute the estimated flow z'(y) of all facilities with its scale level. The estimated 
flow z'(y) and the ratio Ratio'(j,k|y) are listed in Table 7. We also list the exact objective 
value z(y) of our GSAMF algorithm, which solves exact objective value z(y) with 
maximum flow in every iteration, in the table.

Take facility 3 with scale level 1 for example, if we add it into our construction 
plan, the customers who are willing to go to those built facilities are customer 2 and 3. 
Thus, the potential customer demand of each customer is α2=min{d2,q3,1}=min{9,5} 
and α3= min{d3,q3,2} = min{11,5}, respectively. The potential facility supply of the only 
built facility 3, β3, is min{d2,q3,1}+min{d3,q3,2}=min{9,5}+min{11,5}=10. Therefore, 
the estimated flow of adding facility 3 with scale level 1 is z' (y)=min{∑i∈Iαi,∑j∈Jβj 

}=min{5+5,10}=10, and Ratio' (3,1|y) is 1.
According to Table 7, we choose facility 3 with scale level 1 since its Ratio'(j,k|y) is 

the highest one. After adding it into the construction plan (which is constructing nothing 
at the beginning of iteration 1), we end this iteration and proceed to the second iteration 
with only facilities 1 and 2 remain as candidates. The result is shown in Table 8. Note 
that facility 1 with capacity 2 does not have to take into calculation since we do not have 
enough budget to build it. At the end of the second iteration, we add facility 1 with scale 
level 1 into our construction plan. The result is shown in Table 9.
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Table 8  Estimated Flows and Ratios in Iteration 2 of the Example
facility j scale level k Budget z(y)=z' (y) Ratio(j,k|y)=Ratio' (j,k|y)

1 1 Enough 18

1 2 Not – –

2 1 Enough 14

2 2 Enough 16

Table 9  Estimated Flows and Ratios in Iteration 3 of the Example
facility j scale level k Budget z (y) z' (y) Ratio(j,k|y) Ratio' (j,k|y)

2 1 Enough 22 25

2 2 Enough 24 27

At the end of the third iteration, for using GSAMFE algorithm, we add facility 2 with 
scale level 1 into our construction plan since Ratio' (2,2|y) is the highest one. However, 
we find that if we apply GSAMF algorithm, we will choose facility 2 with scale level 2 
instead of scale level 1 since we use Ratio (j,k|y) instead of Ratio' (j,k|y).

4
5

4
35

3
25

4
35

3
25

1
5

9
50

Table 7  Estimated Flows and Ratios in Iteration 1 of the Example
facility j scale level k Budget z(y)=z' (y) Ratio(j,k|y)=Ratio' (j,k|y)

1 1 Enough 8

1 2 Enough 15

2 1 Enough 4

2 2 Enough 8

3 1 Enough 10 1

3 2 Enough 19

4
5

3
14

4
35

4
25

19
60
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After the third iteration, there is no other location can build more facilities at, so 
both GSAMFE and GSAMF end iterations. Therefore, for GSAMFE algorithm, the final 
construction plan y is provided and it will build facility 1, facility 2 and facility 3, all with 
scale level 1. To get the exact objective value of our outcome, we solve maximum flow 
with such y. Finally, our GSAMFE algorithm ends with the estimated flow value z'(y) is 25 
and the actual objective value z(y) is 22. Note that in this example, if we use our GSAMF 
algorithm, the final construction plan y will build facility 1 with scale level 1, facility 2 
with scale level 2 and facility 3 with scale level 1. It gives objective value z(y)=24.

If we solve this example with mixed integer program through solver, we can find that 
the optimal solution is 24 by constructing facility 1 with scale level 1, facility 2 with scale 
level 2 and facility 3 with scale level 1. In this example, we find that GSAMFE sometimes 
may overestimate and choose a solution worse than GSAMF.

5. Numerical Study

5.1 Experiment Setting 
To present the experimental results of the algorithm, we adopt seven factors to 

analyze the performance under different circumstances. The first factor is the size of the 
problem, which three sizes—small, medium and large—are considered. We set m=10, 
n=20 as the small size, m=30, n=60 as the medium size and m=100, n=200 as the large 
size for the problem. The second factor is the number of scale levels which each facility 
has. We consider two scenarios: one is each facility has one scale level and the other is 
each facility has three scale levels. The third factor is the numbers of activity sessions 
which is under two scenarios: problems with only one activity session and with three 
activity sessions.

The fourth and fifth factors are location preference and time preference which affect 
the customer’s time-dependent preference over facilities. In our experiment, the customer 
and facility locations are mapped onto a 2-dimentional coordinate. There are two types 
of customers’ location distributions in our setting: uniformly distribution and clustering 
distribution. In the former type, the locations of customers are randomly separated in the 
map; in the latter type, customers tend to locate near several clusters. The parameter dij 
represents the Euclidian distance between customer i and facility j, and we set customer 
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i’s location preference to facility j to be     . As for the time preference, there are two 
scenarios. One is customers’ time preference are homogeneous, i.e., in each activity 
session, all customers’ time preferences are the same. The other is each customer’s time 
preference is randomly distributed. We denote a parameter rit as the time preference of 
customer i in activity session t. rit is distributed from 0.5 to 1.5. Put these two factors 
together, the preference of customer i to facility j in activity session t, pijt is the product of 
location preference and time preference, i.e.,                .

The last two factors are the capacity of facility and the budget of the construction 
plan, both of which have two types in the experiment. The low-capacity type sets the total 
supply of facilities to 40 percent of the total demand, while the high-capacity type sets it to 
80 percent. The loose budget is set to 40 percent of the total construction cost and the tight 
budget is set to 80 percent.

The above seven factors generate 3×2×2×2×2×2×2=192 scenarios, and we 
generate 30 instances for each scenario. The experiments is performed on a PC with a 
3.2 GHz Intel(R) Core i7-5820K processor and 16 GB RAM. The heuristic algorithm 
is implemented in Spyder 4.0 using python 3.6. And the MIP model is solved using 41 
Gurobi 8.1 and implemented through Gurobi python. 

5.2 Benchmark Algorithm
In order to demonstrate the performance of our algorithm, we implement a genetic 

algorithm for comparison (see below). First, we randomly generate 100 feasible 
construction plans into a pool.4 In each iteration, using the tournament selection method 
(Miller and Goldberg, 1995), we randomly select 5 plans from the pool and pick the best 
two among them. Then we implement crossover to those two plans. We randomly pick 
a cross-point and divide both plans into head and tail. Then we switch one’s head with 
other’s head to form two new plans. The two new solutions have 10% chance to mutate. 
If a solution mutates, it will randomly pick one unbuilt facility with one scale level and 
add it into the construction plan with the budget. Finally, two new solutions will be added 

4 It may be wondered whether 100 is a parameter value for the implementation of the genetic algorithm. 
Therefore, we investigate this issue by examining the performance of the genetic algorithm with other 
parameter values at the end of Section 5.
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4 It may be wondered whether 100 is a parameter value for the implementation of the genetic 
algorithm. Therefore, we investigate this issue by examining the performance of the genetic algorithm 
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into the pool if they are feasible and the worst two plans will be removed from the pool. 
Besides, for the small and medium sizes of problem, we run the genetic algorithm for 2,000 
iterations; for the large size problem, the number of iterations is 10,000. After iterations, 
the genetic algorithm will return the best construction plan in the pool.

5.3 Solution Performance
In this section, we use z to denote the objective value of the solution found by 

GSAMFE, and z* to denote that found by mathematical model.
In Table 10, we find that our algorithm performs well in three problem sizes and 

average performance is better in the medium size. When the problem size increases, there 
is more chance to select non-optimal facilities. However, the effect of selecting single 
wrong facility and scale level may also impact less on the total objective value when the 
problem size increases. Moreover, the number of iterations increase with the problem size. 
Therefore, even if the algorithms choose a non-optimal facility in an iteration, there are 
more chances for them to choose good facilities in the following iterations.

Table 11 shows that our algorithm performs well in two scenarios, and it performs 
better when there is only one scale level. If a facility has multiple scale levels, the 
difficulty of the problem increases. There are more chances to pick the non-optimal facility 
and scale levels, so our algorithm is easily to get a better solution when the number of 
scale levels is less.

Table 10  Numerical Result of Problem Size

Instance size
Average Minimum

Small 0.9855 0.9308 0.7231 0.6702
Medium 0.9915 0.8558 0.8342 0.5917
Large 0.9857 0.7865 0.6656 0.5189

z
z*

z
z*

zGA

z*
zGA

z*
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Table 11  Numerical Result of Number of Scale Level

Number of scale levels
Average Minimum

1 0.9904 0.9202 0.6656 0.5964
3 0.9847 0.7952 0.7231 0.5189

Table 12 shows that the performance in three activity sessions is better. When there 
are more activity sessions, the number of customers’ options also increases. Therefore, 
even if the algorithm chooses non-optimal solutions, there is more chance that some of the 
customers’ demand can still be served by other facilities. 

Table 13 shows that the performance is better when the distribution of customer 
location is cluster. It is because when customers are located clustered, it is likely to serve 
more customers when building a new facility near the cluster center. As for the time 
preference distribution, they perform better in random time preference distribution. If 
customers tend to go to facilities in different activity sessions, there is less chance that 
facilities are full, so it is easier for algorithms to get good solutions.

Table 12  Numerical Result of Number of Activity Sessions

Number of activity 
sessions

Average Minimum

1 0.9854 0.8566 0.7231 0.5189
3 0.9897 0.8588 0.6656 0.5848

Table 13  Numerical Result of Customer Location and Preference Distribution

Location and preference 
distributions

Average Minimum

cluster, cluster 0.9936 0.8568 0.7667 0.5848
cluster, random 0.9936 0.8561 0.8693 0.5755
random, cluster 0.9747 0.8558 0.6656 0.5189
random, random 0.9883 0.8622 0.7231 0.6471

z
z*

z
z*

zGA

z*
zGA

z*

z
z*

z
z*

zGA

z*
zGA

z*

z
z*

z
z*

zGA

z*
zGA

z*
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Finally, Table 14 shows that our algorithm performs well no matter under which 
capacity and budget constraints. Note that this is not true for the genetic algorithm. In 
other words, the performance of GSAMFE is not prone to the tightness of capacity or 
budget.

We finish this section by examining the impact of the parameter value of the genetic 
algorithm. Our goal is to investigate whether 100 is a pool size for the genetic algorithm 
to have good performance. Thus, we adopt alternative pool sizes 25, 50, and 150 to see 
whether different pool sizes result in significantly different performance of the genetic 
algorithm.

Table 14  Numerical Result of Capacity and Budget Constraints

Capacity and budget
Average Minimum

large capacity and large budget 0.9864 0.8826 0.8046 0.6496
large capacity and small budget 0.9809 0.8264 0.7231 0.5189
small capacity and large budget 0.9886 0.8845 0.6656 0.6473
small capacity and small budget 0.9944 0.8374 0.8357 0.5755

The average optimality gaps        are presented in Table 15.5 As different pool sizes 
do not result in significantly different performance, we conclude that the results we obtain 
from Tables 10 to 15 are reasonable.

Table 15  Average Optimality Gap of the Genetic Algorithm

Instance size
Pool size

25 50 100 150
Small 0.8764 0.8926 0.9020 0.8956

Medium 0.8338 0.8579 0.8548 0.8392
Large 0.7705 0.7884 0.7786 0.7687

5 By using the same experiment setting to generate random instances to construct Table 15, we conduct 
a new numerical experiment which is independent of that generating Tables 10 to 14. This is why the 
fourth column of Table 15 is not completely the same as the third column of Table 10.

z
z*

z
z*

zGA

z*
zGA

z*

zGA

z*
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6. Conclusion

In this study, we consider a capacitated facility location problem with time-dependent 
preferences. Inspired by previous literature, we reformulate the problem into a single-
level mixed integer problem with the objective to maximize the total number of customers 
served. Since the problem is NP-hard, we develop two greedy-based heuristic algorithms 
with maximum flow network and flow estimation, respectively. The latter is significantly 
more time efficient. Through our numerical study, we find that our second algorithm can 
provide near-optimal solutions in reasonable much shorter time.

There are several ways to extend this study. In particular, one decision that is missing 
in our model is for the decision maker to determine the equipment/services to be delivered 
in each facility. For example, if the decision maker is building sport facilities, it is the 
job of this decision maker to allocate the limited space to basketball courts, swimming 
pools, fitness rooms, etc., which certainly will affect potential customers’ preference over 
different facilities. Extending our model and algorithm to include this feature will make 
them more applicable in practice. Another research direction is to investigate the proposed 
algorithm from a more theoretical perspective to see whether there is a worst-case 
performance guarantee. An investigation on this may generate analytical contributions to 
the literature of discrete optimization.
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